皮皮网
皮皮网

【att 源码】【防盗软件源码】【洗衣软件源码】linux源码构建

来源:标注工具源码 发表时间:2024-12-26 12:56:04

1.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
2.linux中的码构./configure
3.Linux内核源码分析:Linux内核版本号和源码目录结构
4.如何安装Linux内核源代码安装linux内核源代码
5.Linux内核源码解析---cgroup实现之整体架构与初始化
6.剖析Linux内核源码解读之《配置与编译》

linux源码构建

Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理

       引子

       在如今的大型服务器中,NUMA架构扮演着关键角色。码构它允许系统拥有多个物理CPU,码构不同NUMA节点之间通过QPI通信。码构虽然硬件连接细节在此不作深入讨论,码构但需明白每个CPU优先访问本节点内存,码构att 源码当本地内存不足时,码构可向其他节点申请。码构从传统的码构SMP架构转向NUMA架构,主要是码构为了解决随着CPU数量增多而带来的总线压力问题。

       分配物理内存时,码构numa_node_id() 方法用于查询当前CPU所在的码构NUMA节点。频繁的码构内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的码构变量复制到每个CPU中,以减少缓存行竞争和False Sharing,码构类似于Java中的Thread Local。

       分配物理页

       尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。

       numa_node_id源码分析获取数据

       在topology.h中,我们发现使用了raw_cpu_read函数,传入了numa_node参数。接下来,我们来了解numa_node的定义。

       在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。

       在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。

       在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的防盗软件源码是raw_cpu_read_4方法。

       在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的绝对地址,并通过raw_cpu_ptr方法。

       在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。

       在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。

       对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。

       放入数据

       讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。

       在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,此处不作展开。

       在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。

       在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。

       接下来,我们来设计PER CPU模块。

       设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的洗衣软件源码结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。

       最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。

       通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。

       接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。

       接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。

       在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。

       在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。

       至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。

linux中的./configure

       答案

       在Linux中,"./configure"是一个用于准备源代码构建过程的脚本命令。该脚本通常用于配置软件包的构建环境,并生成相应的Makefile文件。它是自动构建过程的一个重要部分。

       详细解释

       1. "./configure"脚本的作用

       * "./configure"脚本主要用于为软件包的编译和安装做好准备。当开发者从一个源代码包安装软件时,默契挑战源码通常需要执行一系列步骤来配置系统以正确编译和运行该软件。"configure"脚本就是这一系列步骤中的第一步。

       2. 生成Makefile文件

       * 通过运行"./configure"脚本,系统会根据当前环境自动设置必要的参数和选项。然后,它会生成一个适用于当前环境的Makefile文件。Makefile是构建软件过程中的关键文件,它定义了编译软件所需的所有步骤和命令。

       3. 配置软件包的构建环境

       * 在执行"./configure"脚本时,开发者还可以指定各种选项来配置软件包的特性。这些选项可以影响软件的性能、功能或其他方面。通过命令行参数传递这些选项给"configure"脚本。

       4. 注意事项

       * 运行"./configure"之前,通常需要确保系统上已安装构建软件所需的所有依赖项和库。此外,有时还需要为脚本提供特定的命令行参数来满足系统要求或自定义配置。一旦"./configure"成功执行并生成了Makefile,就可以继续下一步的编译和安装过程。

Linux内核源码分析:Linux内核版本号和源码目录结构

       深入探索Linux内核世界:版本号与源码结构剖析

       Linux内核以其卓越的稳定性和灵活性著称,版本号的精心设计彰显其功能定位。Linux采用xxx.yyy.zzz的格式,其中yy代表驱动和bug修复,zz则是修订次数的递增。主版本号(xx)与次版本号(yy)共同描绘了核心功能的大致轮廓,而修订版(zz)则确保了系统的稳定性与可靠性。

       Linux源码的结构犹如一座精密的城堡,由多个功能强大的模块构成。首先,arch目录下包含针对不同体系结构的代码,比如RISC-V和x的虚拟地址翻译,是内核与硬件之间的重要桥梁。接着,blockdrivers的区别在于,前者封装了通用的块设备操作,如读写,而后者则根据特定硬件设备分布在各自的子目录中,如GPIO设备在drivers/gpio。

       为了保证组件来源的可信度和系统安全,certs目录存放认证和签名相关的分享交流源码代码,预先装载了必要的证书。从Linux 2.2版本开始,内核引入动态加载模块机制,fsnet目录下的代码分别支持虚拟文件系统和网络协议,这大大提升了灵活性,但同时也对组件验证提出了更高要求,以防止恶意代码的入侵。

       内核的安全性得到了进一步加强,crypto目录包含了各种加密算法,如AES和DES,它们为硬件驱动提供了性能优化。同时,内核还采用了压缩算法,如LZO和LZ4,以减小映像大小,提升启动速度和内存利用效率。

       文档是理解内核运作的关键,《strong>Documentation目录详尽地记录了模块的功能和规范。此外,include存储内核头文件,init负责初始化过程,IPC负责进程间通信,kernel核心代码涵盖了进程和中断管理,lib提供了通用库函数,而mm则专注于内存管理。网络功能则在net目录下,支持IPv4和TCP/IPv6等协议。

       内核的实用工具和示例代码在scriptssamples目录下,而security则关注安全机制,sound负责音频驱动,tools则存放开发和调试工具,如perf和kconfig。用户内核源码在usr目录,虚拟化支持在virt,而LICENSE目录保证了源码的开放和透明。

       最后,Makefile是编译内核的关键,README文件则包含了版本信息、硬件支持、安装配置指南,以及已知问题、限制和BUG修复等重要细节。这份详尽的指南是新用户快速入门Linux内核的绝佳起点。

       通过深入研究这些目录,开发者和爱好者可以更全面地理解Linux内核的运作机制,从而更好地开发、维护和优化这个强大的操作系统。[原文链接已移除,以保护版权]

如何安装Linux内核源代码安装linux内核源代码

       Linux内核源代码是用于在Linux操作系统上运行应用程序和服务的开放源代码库。通过安装这些内核源代码,您将能够访问更新的功能、兼容性和性能提升。安装Linux内核源代码需要使用控制台和Linux命令行,但是如果您熟悉Linux环境、有耐心并能够一步一步执行操作,则可以轻松安装。

       安装Linux内核源代码的第一步是检查系统是否满足对特定Linux版本的内核源代码的依赖条件,例如检查是否已安装必要的软件包、依赖项等。可以使用 apt-get或 yum 命令查找所需的软件包,并下载并安装它们。如果系统不满足此要求,可能需要进行一些额外的配置,例如安装其他脚本、升级操作系统或安装相应的 hot fix 。

       第二步是从内核代码源下载最新的Linux内核发行版本。此源可从 Linux Kernel Archives (es的基石,同时也被高版本内核中的LXC技术所使用。本文基于最早融入内核中的代码进行深入分析。

       理解cgroup的核心,首先需要掌握其内部的常用术语,如子系统、层级、cgroupfs_root、cgroup、css_set、cgroup_subsys_state、cg_cgroup_link等。子系统负责控制不同进程的行为,例如CPU子系统可以控制一组进程在CPU上执行的时间占比。层级在内核中表示为cgroupfs_root,一个层级控制一批进程,层级内部绑定一个或多个子系统,每个进程只能在一个层级中存在,但一个进程可以被多个层级管理。cgroup以树形结构组织,每一棵树对应一个层级,层级内部可以关联一个或多个子系统。

       每个层级内部包含的节点代表一个cgroup,进程结构体内部包含一个css_set,用于找到控制该进程的所有cgroup,多个进程可以共用一个css_set。cgroup_subsys_state用于保存一系列子系统,数组中的每一个元素都是cgroup_subsys_state。cg_cgroup_link收集不同层级的cgroup和css_set,通过该结构可以找到与之关联的进程。

       了解了这些概念后,可以进一步探索cgroup内部用于结构转换的函数,如task_subsys_state、find_existing_css_set等,这些函数帮助理解cgroup的内部运作。此外,cgroup_init_early和cgroup_init函数是初始化cgroup的关键步骤,它们负责初始化rootnode和子系统的数组,为cgroup的使用做准备。

       最后,需要明确Linux内一切皆文件,cgroup基于VFS实现。内核启动时进行初始化,以确保系统能够正确管理进程资源。cgroup的初始化过程分为早期初始化和常规初始化,其中早期初始化用于准备cpuset和CPU子系统,确保它们在系统运行时能够正常工作。通过这些步骤,我们可以深入理解cgroup如何在Linux内核中实现资源管理和进程控制。

剖析Linux内核源码解读之《配置与编译》

       Linux内核的配置与编译过程详解如下:

       配置阶段

       首先,从kernel.org获取内核源代码,如在Ubuntu中,可通过`sudo apt-get source linux-$(uname -r)`获取到,源码存放在`/usr/src/`。配置时,主要依据`arch//configs/`目录下的默认配置文件,使用`cp`命令覆盖`/boot/config`文件。配置命令有多种,如通过`.config`文件进行手动修改,但推荐在编译前进行系统配置。配置时注意保存配置,例如使用`/proc/config.gz`,以备后续需要。

       编译阶段

       内核编译涉及多种镜像类型,如针对ARM的交叉编译,常用命令是特定的。编译过程中,可能会遇到错误,需要针对具体问题进行解决。编译完成后,将模块和firmware(体系无关)分别存入指定文件夹,记得为某些硬件添加对应的firmware文件到`lib/firmware`目录。

       其他内容

       理解vmlinux、vmlinuz(zImage, bzImage, uImage)之间的关系至关重要。vmlinuz是压缩后的内核镜像,zImage和bzImage是vmlinuz的压缩版本,其中zImage在内存低端解压,而bzImage在高端解压。uImage是uBoot专用的,是在zImage基础上加上特定头信息的版本。

linux内核源码 -- list链表

       在Linux内核中,list链表是一种经典的数据结构,本文将深入探讨其定义、操作方法、注意事项以及实际应用。所有相关操作的实现细节可在<include/linux/list.h>和<include/linux/types.h>文件中找到。

       首先,list链表本质上是一个双向循环链表,其核心结构由一个头指针定义。这个头指针本身不包含数据,而是嵌入到用户自定义的struct中,构建出链表结构,类似于C++中的std::List,但侵入性较小。

       list链表提供了丰富的操作,如初始化、插入(在头部和尾部)、删除、替换、移动以及拆分和合并等。插入操作包括将元素置于两个元素之间,以及在链表头部和尾部插入。删除则涉及删除特定元素或相邻元素,替换则是通过指针操作实现。移动功能允许元素在不同链表之间转移,而拆分和合并则能灵活地分割和合并链表。

       值得注意的是,尽管list链表在设计上支持多线程操作,但在并发环境下操作同一个链表时,仍需确保数据安全,即在操作前后对链表进行适当的锁定。

       在实际使用中,list链表常用于数据的组织和管理,例如处理系统任务队列、进程管理或者内存分配等场景。通过list_entry宏,可以方便地从list_head指针获取到包含数据的struct实例,同时,一系列宏定义也提供了遍历链表和获取链表节点的功能。

LinuxCMake源码编译安装教程

       在Linux环境下进行CMake源码编译和安装的过程简洁明了,适合不同版本管理需求的开发者。具体步骤如下:

       首先,执行卸载操作以清除现有的CMake版本。对于使用默认的APT安装方式,如需替换为特定版本,第一步则为删除当前环境中的旧版本,确保下一步的操作不会遇到冲突。

       接下来,访问官方网站下载最新版CMake的安装包。对于寻求较新版本(如3.或3.等)的用户,需直接下载所需的安装包,比如cmake-3..0-rc3.tar.gz。下载后,使用解压工具将文件解压,如通过命令行实现或鼠标右键快速解压,操作无需过于复杂。

       为了确保后续操作的顺利进行,需要提前安装依赖项。了解并完成这些预安装步骤能有效避免在安装过程中可能遇到的错误,这些依赖包括但不限于编译工具和其他支持包。安装好依赖后,将文件解压到的目录作为工作区。

       进入解压后的目录中,根据官方文档或安装指南,执行编译和构建过程。成功执行至提示的编译和构建完成阶段后,系统将生成可执行文件,并提供一系列指令引导完成最后的安装步骤。

       安装完成后,通过执行特定命令查询CMake版本信息,这一步的输出应当包含版本号等相关信息,确保安装正确无误。至此,CMake源码编译安装流程完毕。

       在处理常见错误问题时,如遇到由SSL问题引发的安装失败,可以采用命令进行修复。面对特定类型的错误提示,同样存在相应的解决方案,通过执行适当的命令来解决这些问题,例如在遇到特定日志错误时,按照提示输入相应的命令行指令,进行调试或修正。

相关栏目:娱乐