1.14 Dlib快速入门
2.推荐收藏! 38 个 Python 数据科学顶级库!库源b库
3.最新人脸识别库Dlib安装方法!原理无需CMAKE,库源b库VS,原理仅需1行命令!库源b库
4.python pip å®è£
dlibä¸ç´å¤±è´¥ï¼
14 Dlib快速入门
Dlib是原理厂家采购源码一个由C++编写的功能丰富的库,包括机器学习、库源b库数值计算、原理图模型算法和图像处理等多个领域。库源b库为了使用Dlib,原理首先需要安装cmake。库源b库对于Linux或Mac OS,原理可通过在官网下载相应的库源b库源码并以root权限在终端运行命令进行安装;对于Windows用户,则以管理员身份打开cmd安装。原理确保cmake已成功安装后,库源b库通过pip安装Dlib。安装完成后,在Python环境下导入Dlib,确认其成功安装。 在Mac OS系统上,还需安装XQuartz以用于显示图像。若在安装XQuartz后遇到显示问题,可运行特定命令解决。完成安装后,可以体验Dlib提供的处理功能。人脸检测
首先,加载Dlib库并准备人脸检测器和显示窗口。获取路径后,对每张执行检测,并在上显示检测结果对应的examstack 源码矩形框。在检测时,可以设定一个阈值以控制检测结果的精确度。人脸关键点检测
利用训练好的模型shape_predictor__face_landmarks.dat,在人脸检测的同时,检测出人脸上的个关键点。准备人脸检测器、关键点检测模型、显示窗口和路径后,对每张进行关键点检测。人脸识别
人脸检测后,通过将每张人脸映射为一个维的向量来实现人脸识别。当两个向量之间的欧氏距离小于0.6时,可以认为是同一个人。在LFW数据集上,这种方法的准确率可达.%。为实现这一功能,需要两个模型:shape_predictor__face_landmarks.dat和dlib_face_recognition_resnet_model_v1.dat。根据人脸检测结果获得关键点检测结果,进一步得到维向量表示。通过距离计算函数比较向量,找出最匹配的标注。 在实际应用中,处理多张标注和未标注,可以确认相似度。例如,通过比较白百合和王珞丹的,可以显示两者之间的相似度。人脸聚类
对于大量中的大量人脸进行聚类,基于人脸识别标准,qingtingfm源码将距离较近的人脸归为一类,可能代表同一人。准备模型和后,获取所有的关键点检测结果和向量表示。以0.5为阈值进行聚类,找出包含最多人脸的类别,并保存这些人脸。物体追踪
物体追踪是指在视频的第一帧指定一个矩形区域,随后自动追踪后续帧中的物体位置。加载追踪器和后,对视频中的物体进行追踪。Dlib能准确追踪物体,即使物体位置发生变化。 以上是Dlib库在人脸检测、关键点检测、人脸识别、人脸聚类和物体追踪方面的一些基本应用示例。通过这些功能,Dlib为图像处理和计算机视觉任务提供了强大的支持。推荐收藏! 个 Python 数据科学顶级库!
欢迎关注@Python与数据挖掘 ,专注 Python、数据分析、数据挖掘、好玩工具!
数据科学领域的顶级 Python 库推荐:
1. Apache Spark - 大规模数据处理的统一分析引擎,
星:,贡献:,贡献者:
2. Pandas - 用于数据处理的狗年 源码快速、灵活且可表达的 Python 软件包,
星:,贡献:,贡献者:
3. Dask - 并行计算任务调度系统,
星:,贡献:,贡献者:
4. Scipy - 用于数学、科学和工程的开源 Python 模块,
星:,贡献:,贡献者:
5. Numpy - Python 科学计算的基本软件包,
星:,贡献:,贡献者:
6. Scikit-Learn - 基于 SciPy 的 Python 机器学习模块,
星:,贡献:,贡献者:
7. XGBoost - 可扩展、便携式和分布式梯度增强 GBDT 库,
星:,贡献:,贡献者:
8. LightGBM - 基于决策树的快速、高性能梯度提升 GB库,
星:,贡献:,贡献者:
9. Catboost - 高速、可扩展、高性能梯度提升库,
星:,贡献:,matconvnet 源码贡献者:
. Dlib - 用于创建解决实际问题的复杂软件的 C++ 工具箱,
星:,贡献:,贡献者:
. Annoy - C++/Python 中的优化内存使用和磁盘加载/保存的近似最近邻居系统,
星:,贡献:,贡献者:
. H2O.ai - 快速可扩展的开源机器学习平台,
星:,贡献:,贡献者:
. StatsModels - Python 中的统计建模和计量经济学,
星:,贡献:,贡献者:
. mlpack - 直观、快速且灵活的 C++ 机器学习库,
星:,贡献:,贡献者:
. Pattern - 包含 Web 挖掘工具的 Python 模块,
星:,贡献:,贡献者:
. Prophet - 生成具有多个季节性和线性或非线性增长的时间序列数据的高质量预测工具,
星:,贡献:,贡献者:
. TPOT - Python 自动化机器学习工具,使用遗传编程优化机器学习 pipeline,
星:,贡献:,贡献者:
. auto-sklearn - 自动化机器学习工具包,scikit-learn 估计器的直接替代品,
星:,贡献:,贡献者:
. Hyperopt-sklearn - scikit-learn 中基于 Hyperopt 的模型选择,
星:,贡献:,贡献者:
. SMAC-3 - 基于顺序模型的算法配置,
星:,贡献:,贡献者:
. scikit-optimize - 用于减少非常昂贵且嘈杂的黑盒功能的 Scikit-Optimize,
星:,贡献:,贡献者:
. Nevergrad - 用于执行无梯度优化的 Python 工具箱,
星:,贡献:,贡献者:
. Optuna - 自动超参数优化软件框架,
星:,贡献:,贡献者:
数据可视化:
. Apache Superset - 数据可视化和数据探索平台,
星:,贡献:,贡献者:
. Matplotlib - 在 Python 中创建静态、动画和交互式可视化的综合库,
星:,贡献:,贡献者:
. Plotly - 适用于 Python 的交互式、基于开源和基于浏览器的图形库,
星:,贡献:,贡献者:
. Seaborn - 基于 matplotlib 的 Python 可视化库,提供高级界面进行吸引人的统计图形绘制,
星:,贡献:,贡献者:
. folium - 建立在 Python 数据处理能力之上并与 Leaflet.js 库地图能力结合的可视化库,
星:,贡献:,贡献者:
. Bqplot - Jupyter 的二维可视化系统,基于图形语法的构造,
星:,贡献:,贡献者:
. VisPy - 高性能的交互式 2D / 3D 数据可视化库,利用 OpenGL 库和现代图形处理单元 GPU 的计算能力显示大型数据集,
星:,贡献:,贡献者:
. PyQtgraph - 科学/工程应用的快速数据可视化和 GUI 工具,
星:,贡献:,贡献者:
. Bokeh - 现代 Web 浏览器中的交互式可视化库,提供优雅、简洁的构造,并在大型或流数据集上提供高性能的交互性,
星:,贡献:,贡献者:
. Altair - Python 的声明性统计可视化库,用于创建更简洁、更可理解的数据可视化,
星:,贡献:,贡献者:
解释与探索:
. eli5 - 用于调试/检查机器学习分类器并解释其预测的库,
星:,贡献:,贡献者:
. LIME - 用于解释任何机器学习分类器预测的工具,
星:,贡献:,贡献者:
. SHAP - 基于博弈论的方法,用于解释任何机器学习模型的输出,
星:,贡献:,贡献者:
. YellowBrick - 可视化分析和诊断工具,用于辅助机器学习模型的选择,
星:,贡献:,贡献者:
. pandas-profiling - 从 pandas DataFrame 对象创建 HTML 分析报告的库,
星:,贡献:,贡献者:
技术交流群:
建了技术交流群,想要进群的同学直接加微信号:dkl,备注:研究方向 + 学校/公司 + 知乎,即可加入。
关注 Python与数据挖掘 知乎账号和 Python学习与数据挖掘 微信公众号,可以快速了解到最新优质文章。
机器学习画图神器推荐,论文、博客事半功倍;模型可解释 AI (XAI) Python 框架盘点,6 个必备;prettytable - 可完美格式化输出的 Python 库;机器学习建模调参方法总结; 个机器学习最佳入门项目(附源代码);精通 Python 装饰器的 个神操作;VS Code 神级插件推荐;Schedule 模块 - Python 周期任务神器;4 款数据自动化探索 Python 神器;数据模型整理,建议收藏;Python 编程起飞的 个神操作;深度学习、自然语言处理和计算机视觉顶级 Python 框架盘点;用户画像标签体系建设指南;机器学习模型验证 Python 包推荐;可视化大屏模板精选,拿走就用;Python 可视化大屏不足百行代码;Python 中的 7 种交叉验证方法详解;文章推荐更多,点个赞和爱心,更多精彩欢迎关注。
最新人脸识别库Dlib安装方法!无需CMAKE,VS,仅需1行命令!
对于需要进行人脸识别的同学,DLib和Face_recognition库无疑是强大的工具。它们可以简化到行Python代码实现高效的人脸识别系统,实时检测个关键点,且检测率和识别精度极高。然而,对于Windows用户来说,DLib的安装过程常常令人头疼,涉及到VS、MSVC++、Boost等众多依赖库,安装过程充满挑战,尤其是从源代码安装时,各种环境问题可能导致错误频发。
传统的安装步骤繁琐,官方推荐的Windows 安装流程包括安装Visual Studio、CMake、Boost等多个库,然后下载并配置源代码。然而,由于环境差异,这些步骤往往难以在所有机器上顺利执行。实际上,一个更简单的方法是使用Anaconda来安装DLib。首先,只需安装Python 3.9版本的Anaconda,从清华源下载并安装。在Anaconda环境中,安装过程更为便捷,且无需繁琐的编译步骤。
步骤如下:1)安装Anaconda,注意选择将Anaconda添加到系统路径;2)配置国内镜像源;3)使用一行命令 `conda install -c conda-forge dlib` 安装DLib。安装完成后,验证是否成功,通过导入dlib并进行特征点检测。如果遇到问题,可以直接联系作者寻求帮助。
对于有需求的同学,作者计划在下期分享一个更详细的摄像头实时人脸识别系统的实现教程,只需行代码。希望这个简单易行的DLib安装方法能帮助大家顺利进行人脸处理项目。感谢大家的支持和关注,期待更多互动!
python pip å®è£ dlibä¸ç´å¤±è´¥ï¼
å®è£ 失败éè¦æ£æ¥å 个é®é¢ï¼å ¼å®¹é®é¢ï¼å¯¹åºçå æ¯æçæä½ç³»ç»ï¼æ¯æçPythonçæ¬
å®è£ é®é¢ï¼é¨åå åªè½éè¿æºç å®è£ ï¼æè 离线çwheelæ¹å¼å®è£
æ ¸å¯¹å çå®è£ ææ¡£
2024-12-25 14:09
2024-12-25 13:59
2024-12-25 13:43
2024-12-25 13:26
2024-12-25 13:24
2024-12-25 13:16
2024-12-25 13:05
2024-12-25 12:57