1.MySQL源码阅读1-启动初始化
2.MySQL源码包下载与使用教程详解mysql下载源码包教程
3.MySQL · 源码分析 · Subquery代码分析
4.MySQL XA事务源码分析
5.100061深入理解MySQL数据库100061mysql
6.MySQL 优化器源码入门-内核实现 FULL JOIN 功能
MySQL源码阅读1-启动初始化
通过深入阅读MySQL源码,码解旨在学习并记录其内核知识。码解初次探索难免有错误或遗漏,码解欢迎指正,码解并期待在后续阅读中对笔记进行修正。码解
MySQL的码解资金异动监控源码启动初始化是关键步骤,涉及核心逻辑与执行流程。码解关注的码解入口函数位于`mysql-server-8.0/sql/mysqld.cc::mysqld_main`。
初始化阶段主要关注点包括启动MySQL中的码解线程,负责执行各种任务。码解MySQL在初始化时启动的码解线程种类多样,确保数据管理、码解查询执行与系统功能高效运作。码解
调用链显示了初始化过程中的码解函数调用关系,每个缩进代表一个函数调用,码解清晰地展示了初始化的执行流程。
总结而言,MySQL服务的初始化步骤复杂且关键,但通常不在日常关注范围内。初次阅读可能存在疏漏,期待在后续阅读中深入探索初始化与终止阶段的代码细节,持续优化理解。
MySQL源码包下载与使用教程详解mysql下载源码包教程
MySQL源码包下载和使用教程详解
MySQL是一种流行的开源关系型数据库管理系统,广泛应用于Web应用程序和企业级应用程序中。MySQL有一个庞大的社区贡献了大量的代码和文档,所以它拥有丰富的特性和功能。这篇文章将向您介绍如何下载和使用MySQL源码包。
下载MySQL源码包
MySQL源码包可以从官方网站下载(/downloads/mysql/)。在下载界面,您可以选择下载不同版本的源码包,包括社区版本和商业版本。社区版本可以免费下载,而商业版本则需要购买许可证才能使用。
使用Git获取MySQL源码
您也可以使用Git来获取MySQL源码,Git是Linux社区开发的分布式版本控制系统。在Linux终端窗口中,可以使用以下命令来安装Git:
sudo apt-get install git
安装之后,可以通过以下命令获取MySQL源码:
git clone /mysql/mysql-server.git
这将下载MySQL源码并将其存储在当前目录中。大型编程源码下载
编译MySQL源码
下载MySQL源码后,需要编译源代码才能使用。以下是一些最基本的编译源码的步骤。
1.进入MySQL源码目录:
cd mysql-server
2.创建一个构建目录:
mkdir build
cd build
3.运行CMake来为编译配置MySQL:
cmake ..
4.运行make命令来开始编译MySQL:
make
这将花费一段时间来编译MySQL。如果一切顺利,您应该看到”SUCCESS”的消息。
安装MySQL
编译完成后,需要将MySQL安装到系统中。以下是一些基本的安装步骤。
1.运行以下命令以开始安装:
sudo make install
2.将MySQL添加到系统PATH变量(可选):
export PATH=$PATH:/usr/local/mysql/bin
3.启动MySQL:
sudo /usr/local/mysql/support-files/mysql.server start
此操作将启动MySQL服务器,并将它设置为在系统启动时自动启动。现在,您可以使用MySQL了。
总结
MySQL是一个功能强大的开源关系型数据库管理系统。有了MySQL源码包,您可以更好地理解MySQL的内部工作原理,并编写更高效的应用程序。本篇文章向您介绍了如何下载MySQL源码包以及如何使用Git从GitHub获取源代码。我们还介绍了基本的编译和安装步骤。
MySQL · 源码分析 · Subquery代码分析
子查询在MySQL中的处理方式,主要涉及到其在条件/投影中的应用。它们以Item_subselect这个表达式类的子类形式存在,描述结构丰富多样。所有子查询在MySQL中以Item_subselect为基类,包含相关或非相关的类型,且具有特定的标记来描述其性质。子查询的执行方式在Subquery_strategy枚举中被明确,共有五种最终执行方式。处理流程分为prepare、optimize和execute三个阶段。在prepare阶段,子查询通过抽象语法树进行初步构建,主要完成将子查询转换为衍生表或选择性执行的逻辑。optimize阶段根据代价估算决定子查询的执行策略,包括物化执行或EXISTS方式。execute阶段,依据优化阶段确定的app管理界面源码策略执行子查询。总结而言,子查询的处理流程在MySQL中较为复杂,特别是在prepare阶段的转换逻辑,但整体处理思路清晰。通过这种方式,MySQL能够高效地处理子查询,实现数据查询和分析的复杂需求。
MySQL XA事务源码分析
事务类型外部 XA PREPARE 流程
省流版:
详细版:
外部 XA COMMIT 过程
省流版:
详细版:
外部 XA 2PC 阶段 Log 落盘顺序
------------------- XA PREPARE START -------------------------
------------------- XA PREPARE END -------------------------
.
.
.
.
.
.
------------------- XA COMMIT START -------------------------
------------------- XA COMMIT END -------------------------
本地事务 commit 流程
省流版
与外部 XA PREPARE 2PC 的不同
与外部 XA COMMIT 的不同
详细版:
------------------- PREPARE START -------------------------
------------------- PREPARE END -------------------------
------------------- COMMIT START -------------------------
------------------- COMMIT END -------------------------
外部 XA ROLLBACK 流程
省流版(Not Prepared Rollback 和 Prepared Rollback 的不同之处)
详细版
Not Prepared Rollback(在 end - prepare 之间 rollback)
Prepared Rollback(在 prepare 之后 rollback)
外部 XA RECOVERY 流程
省流版
详细版
本地事务 RECOVERY 流程
省流版
详细版
为什么只遍历最后一个binlog文件:
rotate 到新的 binlog 文件前,redo log 强制落盘,因此redo commit记录会落盘,保证老的binlog文件没有正在提交的事务
深入理解MySQL数据库mysql
MySQL是一种开源的关系型数据库管理系统,被广泛应用于网站后台、企业级应用层等领域。尽管有不少人都能轻易地使用MySQL执行基本的查询、插入、更新等操作,但是如果想真正将MySQL用好,我们就需要深入了解MySQL的运行过程和工作原理。在这篇文章中,我们将会探讨一些MySQL数据库的核心概念和技术,并通过代码来说明其细节。
一、MySQL的基本部分
MySQL由几个基本组件构成:服务器,存储引擎以及客户端。服务器处理HTTP请求并与存储引擎通信,存储引擎负责存储和检索数据,客户端则负责处理用户和服务器之间的通信。每个MySQL实例都是由一个服务器和一个或多个存储引擎组成。MySQL的存储引擎是插件式的,这意味着它可以通过插件的形式对数据库进行优化,以满足不同的需要。
二、MySQL的存储引擎
MySQL默认使用的存储引擎是InnoDB,它是一个事务性存储引擎,可以锁定表或行、执行事务以及处理外键约束。InnoDB使用B+树结构进行索引文件的网站会员界面源码存储,以提高创建索引的效率。MyISAM则是另一个MySQL存储引擎,它使用B树进行索引文件的存储,并在存储表中具有更好的性能。但是,MyISAM不支持事务和外键约束,可能会出现一些数据损坏的问题。
三、MySQL的查询优化
对于任何数据库管理系统而言,查询优化都是一项至关重要的任务。MySQL查询优化的目的是提高查询处理器的性能,让查询结果能够更快地返回给客户端。MySQL的查询优化器包含许多基本组件,如文本扫描器、联接优化器、排序器等。通过分析分区表、使用正确的索引以及选择正确的存储引擎,我们可以大大提高MySQL查询的效率。
四、MySQL的性能优化
要提高MySQL的性能,需要考虑多种因素,例如服务器硬件、存储引擎、查询效率、系统资源等等。我们还可以通过修改配置文件、增加缓存大小、使用数据分区以及优化查询语句来提高MySQL的性能。在MySQL查询执行期间,我们可以通过查看进程、配置缓存和追踪查询等方式来监控感兴趣的任务,以便及时调整和提高MySQL的性能。
综上所述,MySQL数据库是一款非常强大和易于使用的工具。当我们了解MySQL的各个方面时,就可以更好地控制和优化它以满足各种不同的如何制作网站源码需求。MySQL的源代码非常稳健,易于修改,这也是它成为全球主流数据库管理系统的一个原因。无论你是新手还是专业人士,深入了解MySQL都能让你受益匪浅。
MySQL 优化器源码入门-内核实现 FULL JOIN 功能
本文以实现MySQL内核的FULL JOIN功能为目标,深入解析了MySQL源码的优化器工作流程。首先,作者通过环境和知识准备,明确将重点放在Server执行流程的探索上,从语法规则的修改开始,如在`sql_yacc.yy`中添加新支持,以及在`parse_tree_nodes.cc`中处理FULL JOIN的语法树解析和打印。接着,作者逐步解析了词法、语法分析后的Query_expression、Query_block和Query_term结构,并在关键函数中设置了断点以跟踪执行流程。
在探索了JOIN的优化工作流程后,作者选择在hypergraph_optimizer中实现FULL JOIN,该部分涉及RelationalExpression、JoinHypergraph的构建和AccessPath的生成。尽管过程复杂,但作者通过逐步调试和修改,成功在HashJoinIterator中添加了对FULL JOIN的支持,包括添加新数据成员和状态标记,以及在LEFT JOIN后执行ANTI JOIN流程。
在测试阶段,作者确认了FULL JOIN功能的正确性,通过在代码关键位置的断点观察,确认了FULL OUTER_JOIN的出现,并展示了改造后的迭代器结构。整个过程中,作者强调了在实现过程中面临的挑战和对MySQL历史的参考,最终决定以最少改动的方式完成任务,以保持代码的简洁和性能。
通过这个项目,作者不仅深入理解了MySQL源码,还实现了FULL JOIN功能,为读者提供了一个从零开始实现新功能的实例。
MySQL全文索引源码剖析之Insert语句执行过程
本文来源于华为云社区,作者为GaussDB数据库,探讨了MySQL全文索引源码中Insert语句的执行过程。
全文索引是一种常用于信息检索的技术,它通过倒排索引实现,即单词和文档的映射关系,如(单词,(文档,偏移))。以创建一个表并在opening_line列上建立全文索引为例,插入'Call me Ishmael.'时,文档会被分为'call', 'me', 'ishmael'等单词,并记录在全文索引中。
全文索引Cache的作用类似于Change Buffer,用于缓存分词结果,避免频繁刷盘。Innodb使用fts_cache_t结构来管理cache,每个全文索引的表都会在内存中创建一个fts_cache_t对象。
Insert语句的执行分为三个阶段:写入行记录阶段、事务提交阶段和刷脏阶段。写入行记录阶段生成doc_id并写入Innodb的行记录,并将doc_id缓存。事务提交阶段对文档进行分词,获取{ 单词,(文档,偏移)}关联对,并插入到cache。刷脏阶段后台线程将cache刷新到磁盘。
全文索引的并发插入可能导致OOM问题,可通过修复patch #解决。当MySQL进程崩溃时,fts_init_index函数会恢复crash前的cache数据。
Flink mysql-cdc connector 源码解析
Flink 1. 引入了 CDC功能,用于实时同步数据库变更。Flink CDC Connectors 提供了一组源连接器,支持从MySQL和PostgreSQL直接获取增量数据,如Debezium引擎通过日志抽取实现。以下是Flink CDC源码解析的关键部分:
首先,MySQLTableSourceFactory是实现的核心,它通过DynamicTableSourceFactory接口构建MySQLTableSource对象,获取数据库和表的信息。MySQLTableSource的getScanRuntimeProvider方法负责创建用于读取数据的运行实例,包括DeserializationSchema转换源记录为Flink的RowData类型,并处理update操作时的前后数据。
DebeziumSourceFunction是底层实现,继承了RichSourceFunction和checkpoint接口,确保了Exactly Once语义。open方法初始化单线程线程池以进行单线程读取,run方法中配置DebeziumEngine并监控任务状态。值得注意的是,目前只关注insert, update, delete操作,表结构变更暂不被捕捉。
为了深入了解Flink SQL如何处理列转行、与HiveCatalog的结合、JSON数据解析、DDL属性动态修改以及WindowAssigner源码,可以查阅文章。你的支持是我写作的动力,如果文章对你有帮助,请给予点赞和关注。
本文由文章同步助手协助完成。
MySQL 核心模块揭秘 | 期 | 创建 savepoint
回滚操作,除了回滚整个事务,还可以部分回滚。部分回滚,需要保存点(savepoint)的协助。本文我们先看看保存点里面都有什么。
作者:操盛春,爱可生技术专家,公众号『一树一溪』作者,专注于研究 MySQL 和 OceanBase 源码。 爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源
本文基于 MySQL 8.0. 源码,存储引擎为 InnoDB。
InnoDB 的事务对象有一个名为undo_no 的属性。事务每次改变(插入、更新、删除)某个表的一条记录,都会产生一条 undo 日志。这条 undo 日志中会存储它自己的序号。这个序号就来源于事务对象的 undo_no 属性。
也就是说,事务对象的 undo_no 属性中保存着事务改变(插入、更新、删除)某个表中下一条记录产生的 undo 日志的序号。
每个事务都维护着各自独立的 undo 日志序号,和其它事务无关。
每个事务的 undo 日志序号都从 0 开始。事务产生的第 1 条 undo 日志的序号为 0,第 2 条 undo 日志的序号为 1,依此类推。
InnoDB 的 savepoint 结构中会保存创建 savepoint 时事务对象的 undo_no 属性值。
我们通过 SQL 语句创建一个 savepoint 时,server 层、binlog、InnoDB 会各自创建用于保存 savepoint 信息的结构。
server 层的 savepoint 结构是一个SAVEPOINT 类型的对象,主要属性如下:
binlog 的 savepoint 结构很简单,是一个 8 字节的整数。这个整数的值,是创建 savepoint 时事务已经产生的 binlog 日志的字节数,也是接下来新产生的 binlog 日志写入 trx_cache 的 offset。
为了方便介绍,我们把这个整数值称为binlog offset。
InnoDB 的 savepoint 结构是一个trx_named_savept_t 类型的对象,主要属性如下:
创建 savepoint 时,server 层会分配一块 字节的内存,除了存放它自己的 SAVEPOINT 对象,还会存放 binlog offset 和 InnoDB 的 trx_named_savept_t 对象。
server 层的 SAVEPOINT 对象占用这块内存的前 字节,InnoDB 的 trx_named_savept_t 对象占用中间的 字节,binlog offset 占用最后的 8 字节。
客户端连接到 MySQL 之后,MySQL 会分配一个专门用于该连接的用户线程。
用户线程中有一个m_savepoints 链表,用户创建的多个 savepoint 通过 prev 属性形成链表,m_savepoints 就指向最新创建的 savepoint。
server 层创建 savepoint 之前,会按照创建时间从新到老,逐个查看链表中是否存在和本次创建的 savepoint 同名的 savepoint。
如果在用户线程的 m_savepoints 链表中找到了和本次创建的 savepoint 同名的 savepoint,需要先删除 m_savepoints 链表中的同名 savepoint。
找到的同名 savepoint,是 server 层的SAVEPOINT 对象,它后面的内存区域分别保存着 InnoDB 的 trx_named_savept_t 对象、binlog offset。
binlog 是个老实孩子,乖乖的把 binlog offset 写入了 server 层为它分配的内存里。删除同名 savepoint 时,不需要单独处理 binlog offset。
InnoDB 就不老实了,虽然 server 层也为 InnoDB 的 trx_named_savept_t 对象分配了内存,但是 InnoDB 并没有往里面写入内容。
事务执行过程中,用户每次创建一个 savepoint,InnoDB 都会创建一个对应的 trx_named_savept_t 对象,并加入 InnoDB 事务对象的 trx_savepoints 链表的末尾。
因为 InnoDB 自己维护了一个存放 savepoint 结构的链表,server 层删除同名 savepoint 时,InnoDB 需要找到这个链表中对应的 savepoint 结构并删除,流程如下:
InnoDB 从事务对象的 trx_savepoints 链表中删除 trx_named_savept_t 对象之后,server 层接着从用户线程的 m_savepoints 链表中删除 server 层的SAVEPOINT 对象,也就连带着清理了 binlog offset。
处理完查找、删除同名 savepoint 之后,server 层就正式开始创建 savepoint 了,这个过程分为 3 步。
第 1 步,binlog 会生成一个 Query_log_event。
以创建名为test_savept 的 savepoint 为例,这个 event 的内容如下:
binlog event 写入 trx_cache 之后,binlog offset 会写入 server 层为它分配的 8 字节的内存中。
第 2 步,InnoDB 创建 trx_named_savept_t 对象,并放入事务对象的 trx_savepoints 链表的末尾。
trx_named_savept_t 对象的 name 属性值是 InnoDB 的 savepoint 名字。这个名字是根据 server 层为 InnoDB 的 trx_named_savept_t 对象分配的内存的地址计算得到的。
trx_named_savept_t 对象的savept 属性,是一个 trx_savept_t 类型的对象。这个对象里保存着创建 savepoint 时,事务对象中 undo_no 属性的值,也就是下一条 undo 日志的序号。
第 3 步,把 server 层的 SAVEPOINT 对象加入用户线程的 m_savepoints 链表的尾部。
server 层会创建一个SAVEPOINT 对象,用于存放 savepoint 信息。
binlog 会把binlog offset 写入 server 层为它分配的一块 8 字节的内存里。
InnoDB 会维护自己的 savepoint 链表,里面保存着trx_named_savept_t 对象。
如果 m_savepoints 链表中存在和本次创建的 savepoint 同名的 savepoint, 创建新的 savepoint 之前,server 层会从链表中删除这个同名的 savepoint。
server 层创建的 SAVEPOINT 对象会放入m_savepoints 链表的末尾。
InnoDB 创建的 trx_named_savept_t 对象会放入事务对象的trx_savepoints 链表的末尾。