1.MyBatis 源码加载源码解析:映射文件的加载与解析(上)
2.源码级解析,搞懂 React 动态加载(上) —— React Loadable
3.opensips2.4源码分析模块的源码加载加载
4.MySQL源码加载配置
5.linux内核源码:文件系统——可执行文件的加载和执行
6.PyTorch源码学习 - (13)模型的保存与加载
MyBatis 源码解析:映射文件的加载与解析(上)
MyBatis 的映射文件是其核心组成部分,用于配置 SQL 语句、源码加载二级缓存及结果集映射等功能,源码加载是源码加载其区别于其他 ORM 框架的重要特色。 在解析映射文件时,源码加载海免溯源码什么时候有的MyBatis 源码加载通过调用 XMLMapperBuilder#parse 方法实现加载与解析操作。此方法首先判断映射文件是源码加载否已解析,若未解析则调用 XMLMapperBuilder#configurationElement 方法解析所有配置,源码加载并注册当前映射文件关联的源码加载 Mapper 接口。对于处理异常的源码加载标签,MyBatis 源码加载会记录至 Configuration 对象并尝试二次解析。 解析流程主要涉及以下几个关键步骤:缓存配置(cache 标签):MyBatis 源码加载采用缓存设计,分为一级缓存和二级缓存。源码加载解析 cache 标签时,源码加载首先获取相关属性配置,然后使用 CacheBuilder 创建缓存对象,并记录到 Configuration 对象。
缓存引用(cache-ref 标签):标签默认限定在 namespace 范围内,用于引用其它命名空间中的缓存对象。解析过程中记录引用关系,然后从 Configuration 中获取引用的缓存对象。
结果集映射(resultMap 标签):解析 resultMap 标签配置,构建 ResultMap 对象,并将其记录到 Configuration 中。
SQL 语句(sql 标签):通过 sql 标签配置复用的 SQL 语句片段,解析后记录至 Configuration 的 sqlFragments 属性中。
核心数据库操作(select / insert / update / delete 标签):解析这些标签时,构建 MappedStatement 对象并记录到 Configuration 中。
每个标签解析实现由 MyBatis 提供的多个方法执行,如 XMLMapperBuilder 的 configurationElement 方法和解析具体标签的子方法,如 cacheElement、sqlElement 等。解析过程中,MyBatis 会调用不同的构造器和工厂方法来创建、初始化和配置相应的对象。 在解析完成之后,MyBatis 将所有配置对象封装在 Configuration 对象中,该对象包含所有映射文件中定义的配置信息,供后续的 SQL 语句执行和映射操作使用。源码级解析,搞懂 React 动态加载(上) —— React Loadable
本系列深入探讨SPA单页应用技术栈,sci论文带源码首篇聚焦于React动态加载机制,解析当前流行方案的实现原理。
随着项目复杂度的提升和代码量的激增,如企业微信文档融合项目,代码量翻倍,性能和用户体验面临挑战。SPA的特性使得代码分割成为优化代码体积的关键策略。
code-splitting原理在于将大型bundle拆分为多个,实现按需加载和缓存,显著降低前端应用的加载体积。ES标准的import()函数提供动态加载支持,babel编译后,import将模块内容转换为ESM数据结构,通过promise返回,加载后在then中注册回调。
webpack检测到import()时,自动进行code-splitting,动态import的模块被打包到新bundle中。通过注释可自定义命名,如指定bar为动态加载bundle。
实现简易版动态加载方案,利用code-splitting和import,组件在渲染前加载,渲染完成前展示Loading状态,优化用户体验。然而,复杂场景如加载失败、未完成等需要额外处理。
引入React-loadable,动态加载任意模块的高阶组件,封装动态加载逻辑,支持多资源加载。通过传入参数如模块加载函数、Loading状态组件,统一处理动态加载成功与异常。
通过react-loadable改造组件,实现加载前渲染Loading状态,加载完成后更新组件。支持单资源或多资源Map动态加载,兼容多种场景。
Loadable核心是数据存储调用源码createLoadableComponent函数,采用策略模式,根据不同场景(单资源或多资源Map)加载模块。load方法封装加载状态与结果,loadMap方法加载多个loader,返回对象。
LoadableComponent高阶组件实现逻辑简单,通过注册加载完成与失败的回调,更新组件状态。默认渲染方法为React.createElement(),使用Loadable.Map时需显式传入渲染函数。
在服务端渲染(SSR)场景下,动态加载组件无法准确获取DOM结构,react-loadable提供解决方案,将异步加载转化为同步,支持SSR。
React loadable原始仓库不再维护,局限性体现在适用的webpack与babel版本、兼容性问题以及不支持现代React项目。针对此问题,@react-loadable/revised包提供基于Hooks与ts重构的解决方案。
React-loadable的实现原理与思路较为直观,下文将深入探讨React.lazy + Suspense的原生解决方案,理解Fiber架构中的动态加载,有助于掌握更深层次的知识。
opensips2.4源码分析模块的加载
揭秘opensips 2.4源码中的模块加载奥秘 在opensips 2.4的底层架构中,模块的加载过程由loadmodule指令主导,核心实现主要集中在sr_module.c的load_module函数上。这个函数是模块集成的关键,通过统一的接口<strong>struct module_exports</strong>对外展示,无论是静态模块如<strong>proto_udp.so</strong>和<strong>proto_tcp.so</strong>,还是动态模块,都遵循这一标准。 动态模块加载的路径是由<strong>mpath_buf变量控制,作为sr_load_module参数的一部分,它默认设置在opensips安装路径下的<strong>opensips/lib/opensips/modules/</strong>。 模块加载流程如下:解析配置:loadmodule指令被整合到全局配置中,引导模块的初始化流程。
初始化模块:调用<strong>struct module_exports的函数指针,确保模块能够正确启动。
理解模块的运作,关键在于它继承自<strong>struct module_exports,小程序换源码特别是其中的初始化函数<strong>preinit_f和<strong>init_f,它们是模块启动的核心步骤。 在main.c中的<strong>init_modules函数中,这个流程被细致地执行:遍历所有模块,尝试执行<strong>preinit_f,可能出现失败但不影响后续步骤。
调用<strong>init_f,设置init_done标志,标志着模块初始化完成。
释放依赖信息,确保内存管理的完整性。
在<strong>init_mod阶段,进一步执行以下操作:循环调用<strong>init_f
统计模块数据,与全局的stats_collector紧密相连。
注册管理接口到mi_cmds,以便于系统管理。
模块函数的注册过程十分关键,通过<strong>struct module_exports中的cmds字段,与全局的modules结构体关联起来,通过find_export函数找到并调用相应的函数。 值得注意的是,为了避免命名冲突,模块函数的名称通常会加上前缀,以此来标识其特定的命名空间。MySQL源码加载配置
MySQL源码加载配置主要涉及在启动过程中完成初始化系统变量和装载插件操作。MySQL通过加载配置文件或命令行参数完成这一过程,代码主要体现在mysql.cc中。
启动流程中,mysql调用load_defaults函数完成配置文件和命令行参数的装载。该函数根据argc和argv参数,即命令行参数数量和参数数组,来初始化默认系统变量。其中,MYSQL_CONFIG_NAME宏值默认为"my"。
load_defaults函数初始化默认搜索配置文件的路径,并依次将目录加入数组。在Linux下,路径包括'/etc'、'/etc/mysql'、'MySQL安装目录/etc'、'$MYSQL_HOME'、星球重启重负源码'~/'等。在Windows下,路径则包括C:\Windows\System、C:\Windows、mysqld所在目录以及MySQL安装目录。
my_load_defaults函数具体实现这一过程,初始化默认配置文件目录,构造默认的配置文件路径。函数中,DEFAULT_SYSCONFDIR宏值为mysql安装目录下的etc目录。如果环境变量MYSQL_HOME被设置,则该目录也被加入默认目录列表中。
my_search_option_files函数进一步实现加载配置文件。该函数根据启动时设置的参数--defaults-file、--no-defaults等,或者在指定位置读取配置文件,或者在默认目录中依次读取配置文件。最终读取到的结果被缓存下来。
解析mysqld执行命令,通常会在命令后设置--defaults-file参数。如果没有这个参数,系统将从默认目录中查找my.cnf或my.ini文件。如果这些文件都无法找到,系统会退出。
确定配置文件后,系统通过search_default_file_with_ext函数打开并解析配置文件中的每一行内容。文件支持分组,因此在解析时会确定参数所属的组,组名包括mysqld、server、mysql5.7等。所有有效参数设置都会被标准化并缓存,标准化操作会在命令设置时进行。
每个参数都会被缓存到内存中,这一操作由handle_default_option函数完成。函数会处理当前handle_option_ctx->group中含有的组名,即服务器组,其他组的参数被暂时忽略。这一步操作将组的参数缓存并传到上层栈桢,以便后续处理。
load_defaults执行完成后,配置文件中的参数和命令行参数全部存放在remaining_argc和remaining_argv中。这两个全局变量用于后续初始化变量。
在初始化过程中,handle_early_options函数用于初始化部分需要在mysqld --initialize时使用的系统变量。handle_options函数则根据remaining_argc和remaining_argv更新系统变量值。get_options函数将属性为NORMAL的系统变量和静态系统变量装载到全局变量all_options中。
linux内核源码:文件系统——可执行文件的加载和执行
本文深入探讨Linux内核源码中文件系统中可执行文件的加载与执行机制。与Windows中的PE格式和exe文件不同,Linux采用的是ELF格式。尽管这两种操作系统都允许用户通过双击文件来执行程序,但Linux的实现方式和底层操作有所不同。
在Linux系统中,双击可执行文件能够启动程序,这背后涉及一系列复杂的底层工作。首先,我们简要了解进程间的数据访问方式。在用户态运行时,ds和fs寄存器指向用户程序的数据段。然而,当代码处于内核态时,ds指向内核数据段,而fs仍然指向用户态数据段。为了确保正确访问不同态下的数据,需要频繁地调整fs寄存器的值。
当用户输入参数时,这些信息需要被存储在进程的内存空间中。Linux为此提供了KB的个页面内存空间,用于存放用户参数和环境变量。通过一系列复制操作,参数被安全地存放到了进程的内存中。尽管代码实现可能显得较为复杂,但其核心功能与传统复制函数(如memcpy)相似。
为了理解参数和环境变量的处理,我们深入探讨了如何通过不同fs值来访问内存中的变量。argv是一个指向参数的指针,argv*和argv**指向不同的地址,它们可能位于内核态或用户态。在访问这些变量时,需要频繁地切换fs值,以确保正确读取内存中的数据。通过调用set_fs函数来改变fs值,并在读取完毕后恢复,实现不同态下的数据访问。
在Linux的加载过程中,参数和环境变量的处理涉及到特定的算法和逻辑,以确保正确解析和执行程序。例如,通过检查每个参数是否为空以及参数之间的空格分隔,来计算参数的数量。同时,文件的头部信息对于识别文件类型至关重要。早期版本的Linux文件头部信息相当简单,仅包含几个字段。这些头部信息为操作系统提供了识别文件类型的基础。
为了实现高效文件执行,Linux使用了一系列的内存布局和管理技术。在执行文件时,操作系统负责将参数列表、环境变量、栈、数据段和代码段等组件放入进程的内存空间。这种布局确保了程序能够按照预期运行。
最后,文章提到了一些高级技术,如线程切换、内存管理和文件系统操作,这些都是Linux内核源码中关键的部分。尽管这些技术在日常编程中可能不常被直接使用,但它们对于理解Linux的底层工作原理至关重要。通过深入研究Linux内核源码,开发者能够更全面地掌握操作系统的工作机制,从而在实际项目中提供更高效、更安全的解决方案。
PyTorch源码学习 - ()模型的保存与加载
在PyTorch源码中,模型的保存与加载是通过`torch.save`和`torch.load`两个核心函数实现的。`torch.save`负责将一个Python对象持久化到磁盘文件,而`torch.load`则用于从磁盘文件中恢复对象。
在具体的实现中,`torch.save`会使用一系列辅助函数如`torch._opener`,`torch._open_zipfile_writer`,`torch._open_zipfile_writer_file`,`torch._open_zipfile_writer_buffer`等来操作文件和流。根据文件或内存缓冲区创建流容器,进行对象的保存。`torch._save`则进一步封装了文件的打开和写入过程,`torch._open_file_like`和`torch._open_file`用于管理文件句柄,`torch._open_buffer_writer`和`torch._open_buffer_reader`则封装了二进制流的读写。
对于模型加载,`torch.load`函数通过`torch._open_zipfile_reader`和`torch._weights_only_unpickler`实现。`torch._weights_only_unpickler`是定制的反序列化器,限制了处理的数据类型,确保安全加载模型权重。`torch._get_restore_location`和`torch.default_restore_location`则用于获取和设置恢复位置,以支持在多设备或分布式环境下的模型加载。
实现中,Python和C++的结合是关键,PyTorch使用`PyBind`实现C++和Python接口的绑定。`torch/_C/ __init__.pyi`用于定义Python中类型信息的模板,`torch/csrc/jit/python/init.cpp`则用于实现JIT(Just-In-Time)编译系统,将C++类对象绑定到Python环境,实现高效的动态编译。
在PyTorch中,Python主要负责管理C++对象,核心工作包括管理C++对象的生命周期、调用C++方法,以及处理Python层面的逻辑和接口定义。通过这样的结合,PyTorch实现了高性能和易用性的统一,为深度学习模型的开发和应用提供了强大支持。
整体来看,PyTorch的模型保存与加载机制通过精细的文件操作和对象管理,以及Python与C++的高效结合,确保了模型的高效持久化与灵活加载,为深度学习模型的开发与部署提供了坚实的底层支持。
学习编程|Spring源码深度解析 读书笔记 第4章:bean的加载
在Spring框架中,bean的加载过程是一个精细且有序的过程。首先,当需要加载bean时,Spring会尝试通过转换beanName来识别目标对象,可能涉及到别名或FactoryBean的识别。
加载过程分为几步:从缓存查找单例,Spring容器内单例只创建一次,若缓存中无数据,会尝试从singletonFactories寻找。接着是bean的实例化,从缓存获取原始状态后,可能需要进一步处理以符合预期状态。
原型模式的依赖检查是单例模式特有的,用来避免循环依赖问题。然后,如果缓存中无数据,会检查parentBeanFactory,递归加载配置。BeanDefinition会被转换为RootBeanDefinition,合并父类属性,确保依赖的正确初始化。
Spring根据不同的scope策略创建bean,如singleton、prototype等。类型转换是后续步骤,可能将返回的bean转换为所需的类型。FactoryBean的使用提供了灵活的实例化逻辑,用户自定义创建bean的过程。
当bean为FactoryBean时,getBean()方法代理了FactoryBean的getObject(),允许通过不同的方式配置bean。缓存中获取单例时,会执行循环依赖检测和性能优化。最后,通过ObjectFactory实例singletonFactory定义bean的完整加载逻辑,包括回调方法用于处理单例创建前后的状态。
源码级解析,搞懂 React 动态加载(下) —— @loadable/component
源码级解析,探索 React 动态加载的实现与特性
本系列文章旨在深入探讨单页应用(SPA)技术栈,重点关注动态加载方案的实现原理。上篇中,我们已介绍了 react-loadable 和 React.lazy,其中后者几乎已覆盖所有使用场景,并在 React 版本中添加了 SSR 支持。今天,我们将聚焦于一款名为 @loadable/component 的新方案,探索其在动态加载领域的独特优势与实现机制。
根据官方说明,@loadable/component 不仅支持动态加载组件,还扩展了 prefetch、library 分割等特性,并提供简洁的 API。它允许用户在不依赖其他高阶组件的情况下,直接动态加载组件或库。
为了直观理解动态加载的实现原理,我们先从具体例子入手。通过改造开头的例子,我们展示了如何使用 @loadable/component 实现组件动态加载。
接下来,我们将深入探讨动态加载组件与库之间的区别,以及如何利用 loadable 和 loadable.lib 函数实现动态加载。通过分析源码,我们发现核心逻辑在于使用 createLoadable 工厂方法,该方法根据不同的加载方式(loadable 和 lazy)生成高阶组件 Loadable。
分析 loadable 和 lazy 的实现区别后,我们发现它们在加载模块时的流程相似,但在加载组件时有所差异。动态加载的 ref 属性转发机制也是动态加载组件与库的重要特性之一,通过分析 Loadable 组件内部的实现细节,我们揭示了 ref 属性的指向原理。
在服务端渲染场景下,@loadable/component 的动态加载机制与客户端有所不同,主要通过同步加载动态组件/库来确保渲染过程的流畅性。通过构造函数中的同步加载操作,我们实现了服务端与浏览器端的加载一致,进而保证了渲染时可以获取到动态资源。
总结对比不同动态加载方案,React.lazy + Suspense 提供了强大的异步渲染控制能力,而 react-loadable 和 @loadable/component 则通过高阶组件的形式,实现了组件与库的动态加载。在选择动态加载方案时,应根据项目需求和具体场景进行评估,考虑到不同的特性和限制。
2025-01-19 07:50
2025-01-19 07:31
2025-01-19 07:10
2025-01-19 06:48
2025-01-19 06:27
2025-01-19 05:24