欢迎访问皮皮网官网
皮皮网

【绝杀线指标源码】【首页展示html源码】【2020微星游戏源码】grafana源码

时间:2024-11-19 08:20:51 分类:焦点 来源:海南商城源码

1.部署Kafka监控
2.通过transmittable-thread-local源码理解线程池线程本地变量传递的原理
3.consulmanager部署和使用
4..NET 6+Loki+Grafana实现轻量级日志可视化服务功能
5.基于Prometheus + Grafana搭建IT监控报警最佳实践(2)
6.Go语言微服务框架重磅升级:dubbo-go v3.2.0 -alpha 版本预览

grafana源码

部署Kafka监控

       在Kafka部署过程中,监控系统的设置至关重要。本文将简述搭建Kafka监控的实践经验,包括所选工具和环境配置步骤。

       首先,确保Kafka实例在本地部署了三个实例,绝杀线指标源码未使用Docker。监控方案选择了kafka_exporter、Prometheus和Grafana组合,详细选择理由可自行查阅网络资源。kafka_exporter在本地编译部署,因遇到go环境不匹配问题,最终选择源码编译,通过git克隆v1.7.0版本,设置goproxy以获取依赖库。编译过程中,对`go mod vendor`指令进行了修改,成功编译出kafka_exporter可执行文件,并针对多个Kafka实例制定了启动命令。

       同时,为了监控系统负载,部署了node-exporter在Docker中,确保其固定IP以方便Prometheus的配置。node-exporter的IP设为..0.2,端口为。首页展示html源码

       接下来是Prometheus的部署。首先通过Docker拉取prom/prometheus镜像,配置文件中包含了Prometheus自身、node-exporter(.网段)和kafka_exporter(..0.1)的采集项。使用命令`docker run`启动Prometheus,监听端口,与node-exporter和kafka_exporter通信。

       Grafana的安装则在另一个目录B中进行,设置了读写权限后通过Docker拉取grafana/grafana镜像。部署时,Grafana容器的IP设为..0.4,监听端口。登录Grafana后,首先添加DataSource,指向Prometheus实例,然后导入官网提供的Linux系统模板(如、),Kafka监控模板(如),以及Prometheus模板()以设置Dashboard。

       总结,通过这些步骤,成功搭建了Kafka的监控系统,包括本地部署的kafka_exporter、Docker中的2020微星游戏源码node-exporter和Prometheus,以及Grafana用于可视化监控数据。

通过transmittable-thread-local源码理解线程池线程本地变量传递的原理

       最近几周,我投入了大量的时间和精力,完成了UCloud服务和中间件迁移至阿里云的工作,因此没有空闲时间撰写文章。不过,回忆起很早之前对ThreadLocal源码的分析,其中提到了ThreadLocal存在向预先创建的线程中传递变量的局限性。恰好,我的一位前同事,HSBC的技术大牛,提到了团队引入了transmittable-thread-local(TTL)来解决此问题。借此机会,我深入分析了TTL源码,本文将全面分析ThreadLocal和InheritableThreadLocal的局限性,并深入探讨TTL整套框架的实现。如有对线程池和ThreadLocal不熟悉的读者,建议先阅读相关前置文章,本篇文章行文较为干硬,字数接近5万字,希望读者耐心阅读。

       在Java中,没有直接的API允许子线程获取父线程的实例。获取父线程实例通常需要通过静态本地方法Thread#currentThread()。更多商业免费源码同样,为了在子线程中传递共享变量,也常采用类似的方法。然而,这种方式会导致硬编码问题,限制了方法的复用性和灵活性。为了解决这一问题,线程本地变量Thread Local应运而生,其基本原理是通过线程实例访问ThreadLocal.ThreadLocalMap来实现变量的存储与传递。

       ThreadLocal与InheritableThreadLocal之间的区别主要在于控制ThreadLocal.ThreadLocalMap的创建时机和线程实例中对应的属性获取方式。通过分析源码,可以清楚地看到它们之间的联系与区别。对于不熟悉概念的读者,可以尝试通过自定义实现来理解其中的原理与关系。

       ThreadLocal和InheritableThreadLocal的最大局限性在于无法为预先创建的线程实例传递变量。泛线程池Executor体系、TimerTask和ForkJoinPool等通常会预先创建线程,因此无法在这些场景中使用ThreadLocal和InheritableThreadLocal来传递变量。

       TTL提供了更灵活的解决方案,它通过委托机制(代理模式)实现了变量的传递。委托可以基于Micrometer统计任务执行时间并上报至Prometheus,然后通过Grafana进行监控展示。此外,TTL通过字节码增强技术(使用ASM或Javassist等工具)实现了类加载时期替换Runnable、热血神途源码Callable等接口的实现,从而实现了无感知的增强功能。TTL还使用了模板方法模式来实现核心逻辑。

       TTL框架的核心类TransmittableThreadLocal继承自InheritableThreadLocal,通过全局静态变量holder来管理所有TransmittableThreadLocal实例。holder实际上是一个InheritableThreadLocal,用于存储所有线程本地变量的映射,实现变量的全局共享。disableIgnoreNullValueSemantics属性的设置可以影响NULL值的处理方式,影响TTL实例的行为。

       发射器Transmitter是TransmittableThreadLocal的一个公有静态类,提供传输TransmittableThreadLocal实例和注册当前线程变量至其他线程的功能。通过Transmitter的静态方法,可以实现捕获、重放和复原线程本地变量的功能。

       TTL通过TtlRunnable类实现了任务的封装,确保在执行任务时能够捕获和传递线程本地变量。在任务执行前后,通过capture和restore方法捕获和重放变量,实现异步执行时上下文的传递。

       启用TTL的Agent模块需要通过Java启动参数添加javaagent来激活字节码增强功能。TTL通过Instrumentation回调激发ClassFileTransformer,实现目标类的字节码增强,从而在执行任务时自动完成上下文的捕捉和传递。

       TTL框架提供了一种高效、灵活的方式来解决线程池中线程复用时上下文传递的问题。通过委托机制和字节码增强技术,TTL实现了无入侵地提供线程本地变量传递功能。如果您在业务代码中遇到异步执行时上下文传递的问题,TTL库是一个值得考虑的解决方案。

consulmanager部署和使用

       书接上回 渐行渐远:prometheus的安装以及监控指标的配置

       这次主要介绍如何使用consulmanager 去监控各个监控项

       一 consulmanager安装

       github.com/starsliao/Te... #consulmanager项目地址

       consulmanager 是一个开源的项目,现在已经更名为tensuns,有兴趣的可以自行研究

       要想安装consulmanager,必须先安装下面三个 docker ,docker-compase, consul

       1.1 安装consul

       1.1.1 安装consul-基于centos7

       1.1.2 生成uuid

       1.1.3 配置文件设置

       1.1.4 启动consul

       访问方式 ip:

       1.2 安装docker和docker-compase

       1.2.1 安装docker

       1.2.2 安装docker-compase

       二 安装 ConsulManager

       2.1 下载源码

       下载地址 github.com/starsliao/Co...

       目录结构如下:

       2.2 docker-compose.yml 内容

       2.3 启动并访问

       三 配置consulmanager

       3.1 云主机管理

       3.1.1 同步云主机

       云主机管理就是可以自动同步云服务器到consulmanager这个上面

       前提是需要你在云账号里面创建access key 和secret key,这个账号还需要有访问主机的权限

       新增云资源

       创建完成之后,你可以手动同步,也可以自动同步,然后去云主机列表查看,是否同步过来了

       3.1.2 批量云主机监控

       前提是每天主机需要安装好node-exporter

       选定好指定的组,选择好系统,点击生成配置,然后把这个配置,粘贴到prometheus的配置文件中

       进行重启prometheus

       然后进去到prometheus-target里进行查看

       当然如果你的node-exporter的端口不是,怎么办,打开cousul的web页面,可以自定义设置

       3.1.3 导入对应的模版

       导入ID:

       详细URL: grafana.com/grafana/das...

       3.1.4 设置告警规则

       3.2 blackbox站点监控设置

       3.2.1. 配置Blackbox_Exporter

       在Web页面点击

       Blackbox 站点监控/Blackbox 配置,点击

       复制配置,如下所示:

       复制配置到 blackbox.yml,清空已有的配置,把复制的内容粘贴进去,重启blackbox_exporter

       3.2.2 配置Prometheus

       在Web页面点击 Blackbox 站点监控/Prometheus 配置,点击复制配置。编辑Prometheus的

       prometheus.yml,把复制的内容追加到最后,reload或重启Prometheus

       3.2.3. 配置Prometheus告警规则

       在Web页面点击

       Blackbox 站点监控/告警规则,点击复制配置。

       编辑Prometheus的配置文件,添加 rules.yml,然后把复制的内容粘贴到rules.yml里面,reload或重启Prometheus。

       然后去prometheus查看告警规则是否生成

       3.2.4. 查看Prometheus

       在Prometheus的Web页面中,点击Status-Targets,能看到新增的Job即表示数据同步到Prometheus。

       3.2.5 新增tcp或者blogs.com/weskynet/p/领取本地安装包,包括源码。

       解压Loki至本地后,根据文档配置文件。注意配置文件中的retention_period应为小时的整数倍。更多Loki配置信息,请参考grafana.com/docs/loki/l页面。

       启动Loki服务,推荐在控制台操作以确保稳定运行。启动命令为:xxx.exe --config.file=配置文件.yaml。若条件允许,您也可将Loki服务挂载到Windows中,方法参考另一篇文章,了解如何挂载Elasticsearch等至Windows服务。

       创建测试案例,使用基于.NET6的webapi服务。在此服务中,引用serilog包,并在appsetrings配置文件中添加日志输出配置,分别输出至控制台与Loki,并配置日志标签用于查询和规则匹配。

       在启动项内注册serilog日志服务,确保自动关联配置文件。在控制器中新增日志写入测试方法,注入日志服务,输出不同类型的日志。

       运行程序后,通过Swagger接口测试日志写入,控制台将显示日志输出。在Grafana中,通过数据源设置连接Loki,配置Loki部署地址(默认为本地),并测试连接成功。接下来,使用Explore菜单进行日志查询,预设查询区间,选择标签与标签值进行搜索,根据时间区间查询对应日志。同时,可以以Json形式查看日志,或进行关键字查询。

       如果您需要配套的安装包和源码,可扫描下方二维码,或搜索公众号Dotnet Dancer,回复Loki获取所有内容。本文至此结束,希望对您的日志管理与分析工作有所帮助。

基于Prometheus + Grafana搭建IT监控报警最佳实践(2)

       见字如面,大家好,我是小斐。延续前文,本文将深入探讨Prometheus和Grafana的监控体系。

       首先,我们需要打开Prometheus和Grafana进行操作,访问地址分别为:...:/ 和 ...:/。

       以node_exporter数据采集器为例,先确保其已安装于需要监控的主机。若要获取...主机的状态数据,需在该主机安装node_exporter采集器。

       在prometheus.yml中添加需要抓取的目标源信息,具体操作为:在scrape_configs下添加job_name,指定静态目标,添加...:目标。

       配置文件配置完成后,由于是静态的,需要重新加载配置文件,重启Prometheus以生效。

       在targets中查看是否已抓取到目标,根据上图可见,...的主机节点数据已抓取到。在Prometheus中验证数据正确性,点击.dubbo.apache.org/zh-cn/overview/core-features/traffic/

       流量管控商场示例:.dubbo.apache.org/zh-cn/overview/tasks/traffic-management/

       作者:王宇轩,Apache Dubbo Committer

copyright © 2016 powered by 皮皮网   sitemap