1.STL 源码剖析:sort
2.STL源码分析之std::function
3.STL源码剖析9-set、现源multiset
4.[stl 源码分析] std::sort
5.stl源码解析剖析应该怎样读?现源
6.STL源码剖析总结笔记(2):容器(containers)概览
STL 源码剖析:sort
我大抵是太闲了。
更好的现源阅读体验。
sort 作为最常用的现源 STL 之一,大多数人对于其了解仅限于快速排序。现源
听说其内部实现还包括插入排序和堆排序,现源dvd 源码于是现源很好奇,决定通过源代码一探究竟。现源
个人习惯使用 DEV-C++,现源不知道其他的现源编译器会不会有所不同,现阶段也不是现源很关心。
这个文章并不是现源析完之后的总结,而是现源边剖边写。不免有个人的现源猜测。而且由于本人英语极其差劲,现源大抵会犯一些憨憨错误。
源码部分sort
首先,在 Dev 中输入以下代码:
然后按住 ctrl,鼠标左键sort,就可以跳转到头文件 stl_algo.h,并可以看到这个:
注释、模板和函数参数不再解释,我们需要关注的是函数体。
但是,中间那一段没看懂……
点进去,是一堆看不懂的#define。
查了一下,感觉这东西不是我这个菜鸡能掌握的。
有兴趣的 戳这里。
那么接下来,就应该去到函数__sort 来一探究竟了。
__sort
通过同样的方法,继续在stl_algo.h 里找到 __sort 的源代码。
同样,知道部分源码只看函数体部分。
一般来说,sort(a,a+n) 是对于区间 [公式] 进行排序,所以排序的前提是 __first != __last。
如果能排序,那么通过两种方式:
一部分一部分的看。
__introsort_loop
最上边注释的翻译:这是排序例程的帮助程序函数。
在传参时,除了首尾迭代器和排序方式,还传了一个std::__lg(__last - __first) * 2,对应 __depth_limit。
while 表示,当区间长度太小时,不进行排序。
_S_threshold 是一个由 enum 定义的数,好像是叫枚举类型。
当__depth_limit 为 [公式] 时,也就是迭代次数较多时,不使用 __introsort_loop,而是使用 __partial_sort(部分排序)。
然后通过__unguarded_partition_pivot,得到一个奇怪的位置(这个函数的翻译是无防护分区枢轴)。
然后递归处理这个奇怪的位置到末位置,再更新末位置,继续循环。
鉴于本人比较好奇无防护分区枢轴是什么,于是先看的__unguarded_partition_pivot。
__unguarded_partition_pivot
首先,找到了中间点。
然后__move_median_to_first(把中间的数移到第一位)。
最后返回__unguarded_partition。
__move_median_to_first
这里的中间数,并不是过0源码数列的中间数,而是三个迭代器的中间值。
这三个迭代器分别指向:第二个数,中间的数,最后一个数。
至于为什么取中间的数,暂时还不是很清楚。
`__unguarded_partition`
传参传来的序列第二位到最后。
看着看着,我好像悟了。
这里应该就是实现快速排序的部分。
上边的__move_median_to_first 是为了防止特殊数据卡 [公式] 。经过移动的话,第一个位置就不会是最小值,放在左半序列的数也就不会为 [公式] 。
这样的话,__unguarded_partition 就是快排的主体。
那么,接下来该去看部分排序了。
__partial_sort
这里浅显的理解为堆排序,至于具体实现,在stl_heap.h 里,不属于我们的讨论范围。
(绝对不是因为我懒。)
这样的话,__introsort_loop 就结束了。下一步就要回到 __sort。
__final_insertion_sort
其中某常量为enum { _S_threshold = };。
其中实现的函数有两个:
__insertion_sort
其中的__comp 依然按照默认排序方式 < 来理解。
_GLIBCXX_MOVE_BACKWARD3
进入到_GLIBCXX_MOVE_BACKWARD3,是一个神奇的 #define:
其上就是move_backward:
上边的注释翻译为:
__unguarded_linear_insert
翻译为“无防护线性插入”,应该是指直接插入吧。
当__last 的值比前边元素的值小的时候,就一直进行交换,网页源码允许最后把 __last 放到对应的位置。
__unguarded_insertion_sort
就是直接对区间的每个元素进行插入。
总结
到这里,sort 的源代码就剖完了(除了堆的那部分)。
虽然没怎么看懂,但也理解了,sort 的源码是在快排的基础上,通过堆排序和插入排序来维护时间复杂度的稳定,不至于退化为 [公式] 。
鬼知道我写这么多是为了干嘛……
STL源码分析之std::function
std::function是一个在C++中广泛应用的函数包装器,它允许你以类型安全的方式存储、复制和调用任何可复制构造的可调用目标,如普通函数、成员函数、类对象(重载了operator()的类的对象)、Lambda表达式等。通过使用std::function,可以避免使用函数指针时的类型不安全问题。
然而,许多人对于std::function内部是如何存储这些可调用目标的实现过程感到好奇。本文将深入探讨std::function的源码,揭示它的实现机制。首先,我们来看一下std::function的基本用法和功能。然后,我们将分析其源码,了解它如何存储和管理这些可调用目标。
在源码中,std::function是一个模板类,其核心成员变量_M_invoker存储了一个标准函数指针类型。这个指针并不直接管理可调用目标,而是负责调用存储在内部的可调用目标。实际的挂机打怪源码可调用目标则由类_Function_base::_M_functor管理。
为了实现这一点,std::function使用一个名为function的构造函数,通过一个名为_M_init_functor的函数来初始化_M_invoker,从而将可调用目标链接到_M_invoker上。这个过程涉及到一个名为_Base_manager的内部类,它负责存储和管理可调用目标。
在源码中,我们发现可调用目标的存储方式取决于其大小。对于小到足以在单个内存位置存储的目标,如普通函数指针,std::function直接使用_M_pod_data作为存储空间。而对于较大的目标,如Lambda表达式或类对象,它会动态分配内存来存储这些对象。
通过仔细分析这些内部实现,我们可以看到std::function是如何在存储和调用可调用目标之间建立起复杂的链接。这种设计使得std::function成为了一个灵活且强大的工具,能够在C++程序中实现高度动态和类型安全的函数调用。
总之,std::function通过巧妙地设计其内部实现,实现了对各种可调用目标的高效存储和调用。了解其源码可以帮助我们更好地利用std::function的强大功能,同时也能深入理解C++中类模板和动态内存管理的高级概念。
STL源码剖析9-set、multiset
STL源码剖析-set、multiset
在深入探讨STL源码时,set与multiset是关键组件,它们皆基于红黑树实现。这些数据结构设计旨在高效处理有序集合。set类及其内部rb tree模板参数identity,定义在stl_function.h文件中,是仿函数的一种实现。这表明set类能够灵活地根据用户自定义的比较规则来组织数据,从而提供强大的灵活性。
具体而言,stl_set.h文件中定义了set类,它封装了红黑树结构,用于存储无重复元素的集合。借助rb tree的特性,set能够保证插入、删除、查找等操作的时间复杂度为O(log n)。而identity参数的选择,使得用户能基于不同的比较逻辑自定义元素间的相对顺序,适应多种应用场景。
多集类multiset则是在set的基础上扩展而来的,它允许集合中元素重复出现。这种设计使得multiset在需要存储有重复元素的有序集合时更为适用。与set类似,multiset同样基于红黑树实现,但其模板参数identity的用法与set相同,依然定义在stl_function.h中,以便实现自定义的比较逻辑。
在stl_multiset.h文件中,可找到multiset类的定义。它继承自set,并通过增加对重复元素的支持,为用户提供了一个更灵活的数据结构选择。通过灵活运用multiset,开发人员能够轻松实现需要频繁插入、删除重复元素的有序集合,同时保持高效的操作性能。
总结而言,set与multiset作为STL中的重要组件,分别针对无重复元素与允许重复元素的有序集合提供高效实现。通过自定义比较逻辑与红黑树结构的结合,它们不仅保证了数据的有序性,还提供了高效的操作性能,成为众多应用程序中不可或缺的数据结构。
[stl 源码分析] std::sort
std::sort在标准库中是一个经典的复合排序算法,结合了插入排序、快速排序、堆排序的优点。该算法在排序时根据几种算法的优缺点进行整合,形成一种被称为内省排序的高效排序方法。
内省排序结合了快速排序和堆排序的优点,快速排序在大部分情况下具有较高的效率,堆排序在最坏情况下仍能保持良好的性能。内省排序在排序过程中,先用快速排序进行大体排序,然后递归地对未排序部分进行更细粒度的排序,直至完成整个排序过程。在快速排序效率较低时,内省排序会自动切换至插入排序,以提高排序效率。
在实现上,std::sort使用了内省排序算法,并在适当条件下切换至插入排序以优化性能。其源码包括排序逻辑的实现和测试案例。排序源码主要由内省排序和插入排序两部分组成。
内省排序在排序过程中先快速排序,然后对未完全排序的元素进行递归快速排序。当子数组的长度小于某个阈值时,内省排序会自动切换至插入排序。插入排序在小规模数据中具有较高的效率,因此在内省排序中作为优化部分,提高了整个排序算法的性能。
插入排序在排序过程中,将新元素插入已排序部分的正确位置。这种简单而直观的算法在小型数据集或接近排序状态的数据中表现出色。内省排序通过将插入排序应用于小规模数据,进一步优化了排序算法的性能。
综上所述,std::sort通过结合内省排序和插入排序,实现了高效且稳定的数据排序。内省排序在大部分情况下提供高性能排序,而在数据规模较小或接近排序状态时,插入排序作为优化部分,进一步提高了排序效率。这种复合排序方法使得std::sort成为标准库中一个强大且灵活的排序工具。
stl源码解析剖析应该怎样读?
在阅读STL源码时,重要的是对整体框架有一个大致的了解。这将帮助你理解每个组件如何协同工作。
首先,重点了解vector的动态增长机制。这将揭示当数据量增加时,如何高效地扩展内存以保持性能。接着,探索list如何使用节点(node)表示元素,以及deque如何采用映射节点(map node)的思想来存储数据。这两种数据结构在STL中的应用方式将为你提供深入理解容器如何实现的关键。
进一步,关注关联式容器(如map和set)和非关联式容器(如vector和deque)的底层实现。这将揭示STL如何利用特定的数据结构和算法来优化查找、插入和删除操作。尽管现在的实现可能与STL最初版本有所不同,但了解这些原理仍具有重要意义。
对于具体的实现细节,了解即可,不必过于深入。如需详细研究,可以直接查看libcxx或libstdc++的源码,它们提供了更现代的实现版本。此外,关于traits部分,由于其与当前实现已有显著差异,阅读时不必过于纠结。
了解STL源码对于求职者来说,可能不会对面试结果产生直接的决定性影响。面试通常考查的是广泛的知识,而不仅仅局限于某个领域的深度。因此,对STL源码的深入理解并不是求职的唯一关键。
STL源码剖析总结笔记(2):容器(containers)概览
容器作为STL的重要组成部分,其使用极大地提升了解决问题的效率。深入研究容器内部结构与实现方式,对提升编程技能至关重要。本文将对容器进行概览,分为序列式容器、关联式容器与无序容器三大类。
容器大致分为序列式容器、关联式容器和无序容器。其中序列式容器侧重于顺序存储,关联式容器则强调元素间的键值关系,而无序容器可以看作关联式容器的一种。
容器之间的关系可以归纳为:序列式容器为基层,关联式容器则在基层基础上构建了更复杂的数据结构。例如,heap和priority容器以vector作为底层支持,而set和map则采用红黑树作为基础数据结构。此外,还存在一些非标准容器,如slist和以hash开头的容器。在C++ 中,slist更名为了forward-list,而hash开头的容器改名为了unordered开头。
在容器的实现中,sizeof()函数可能揭示容器的内部大小对比。需要注意的是,尽管在GNU 4.9版本中,一些容器的设计变得复杂,采用了较多的继承结构,但实际上,这些设计在功能上并未带来太大差异。
熟悉容器的结构后,我们可以从vector入手,探索其内部实现细节。其他容器同样蕴含丰富的学习内容,如在list中,迭代器(iterators)的设计体现了编程的精妙之处;而在set和map中,红黑树的实现展现了数据结构的高效管理。
本文对容器进行了概览,旨在提供一个全面的视角,后续将对vector、list、set、map等容器进行详细分析,揭示其背后的实现机制与设计原理。