1.带源的源码笔记品牌有哪些
2.EasyLogger源码学习笔记(3)
3.Mobx源码阅读笔记——3. proxy 还是defineProperty,劫持对象行为的源码笔记两个方案
4.Vue2源码学习笔记 - 7.响应式原理一基础
5.UGUI 源码笔记(一)文件结构和部分组件使用
6.Vuex 4源码学习笔记 - mapState、mapGetters、源码笔记mapActions、源码笔记mapMutations辅助函数原理(六)
带源的源码笔记品牌有哪些
带源的品牌包括源码链、源码笔记、源码笔记多空决策公式源码车源易找等。源码笔记解释如下:
源码链
源码链是源码笔记一个以技术为核心的品牌。主要致力于区块链技术的源码笔记研发与应用,为各类企业和开发者提供基于区块链的源码笔记解决方案。品牌名中的源码笔记“源码”,寓意着其注重技术的源码笔记本源,追求技术的源码笔记纯净与原始;而“链”则反映了其在区块链领域的专注和链接价值。这个品牌以其技术实力和创新能力得到了广大开发者和企业的源码笔记认可。
源码笔记
源码笔记是源码笔记一家注重知识分享和传承的品牌。它专注于各类源代码的学习和研究,为广大开发者提供有价值的笔记和教程。品牌名中的“源码”反映了其关注源代码的学习和研究领域;而“笔记”则表达了其注重知识的积累和分享。这个品牌以其深入浅出、实用为主的教程赢得了广大开发者的喜爱。
车源易找
车源易找是一家在汽车领域有着广泛影响力的品牌。其主要业务是提供汽车信息服务和车源查找服务。品牌名中的“车源”直接表达了其主要业务领域——汽车;而“易找”则体现了其服务宗旨,即为消费者提供一个简单、快捷的查找车源的平台。这个品牌以其丰富的信息资源和服务赢得了广大消费者的信任。
以上所述的几个带源的品牌,虽然所处领域不同,但它们都以自己的名字准确地反映了自身的业务范围和服务宗旨,从而获得了消费者或用户的广泛认可和信赖。
EasyLogger源码学习笔记(3)
在EasyLogger源码学习中,枚举变量的使用十分直观。定义枚举类型后,可以直接在代码中操作,提升可读性和代码清晰度。
va_list是一个字符指针,用于在可变参数表中导航和取值。首先,你需要定义一个va_list类型的变量ap,然后通过va_start函数初始化,ap指向变参表的第一个参数,后续的参数获取通过va_arg完成,它会根据指定类型从ap中提取并返回值,操作建议指标源码同时更新ap的位置。使用完毕后,记得调用va_end来释放ap,以确保程序的健壮性。
对于字符串处理,vsnprintf提供了格式化输出功能,它能在指定长度内限制输出,避免溢出。例如,snprintf函数可以格式化字符串并存储在给定的缓冲区中,确保字符数不超过预设的大小。
在查找字符串时,strstr函数用于在haystack中查找needle首次出现的位置,但不包括结束符。在函数定义中,诸如va_start(args, format)这样的语句用于处理可变参数。
在elog_output函数中,tag_sapce的初始化出现疑问,原因在于需要保证标签对齐,通过memset函数在前面填充空格。这里,用'ELOG_FILTER_TAG_MAX_LEN / 2 - tag_len'的长度来确保足够的空间,而不是'ELOG_FILTER_TAG_MAX_LEN + 1',因为这样可以避免不必要的填充。
在elog_find_tag函数中,返回值的问题在于它实际返回了日志的tag及其后续信息,而不是仅限于tag本身。因此,需要检查并修正这个逻辑,以确保返回正确的内容。
Mobx源码阅读笔记——3. proxy 还是defineProperty,劫持对象行为的两个方案
这篇文章将深入分析 MobX 的 observableObject 数据类型的源码,同时探讨使用 Proxy 和 Object.defineProperty 这两种实现方案来劫持对象行为的策略。通过分析,我们能够理解 MobX 在创建 observableObject 时是如何同时采用这两种方案,并在创建时决定使用哪一种。
首先,回顾 observableArray 的实现方式,通过 Proxy 代理数组的行为,转发给 ObservableArrayAdministration 来实现响应式修改的逻辑。同样,我们已经讨论过 observableValue 的缠论分析源码实现,通过一个特殊的类 ObservableValue 直接使用其方法,无需代理。
对于 observableObject 的实现机制,其特点在于同时采用了上述两种方案,并且在创建时决定使用哪一种。让我们回到文章中提到的工厂方法,其中根据 options.proxy 的值来决定使用哪一种方案。
在 options.proxy 为 false 的情况下,使用第一条路径来实现 observableObject。这通过直接返回 extendObservable 的结果,其中 extendObservable 是一个工具函数,用于向已存在的目标对象添加 observable 属性。属性映射中的所有键值对都会导致目标上生成新的 observable 属性,并且属性映射中的任意 getters 会被转化为计算属性。
这里首先根据 options 参数选择特定的 decorator,这个过程与之前在第一篇文章中通过 options 参数选择特定的 enhancer 类似。实际上,这里的 decorator 起到了类似的作用,甚至在创建 decorator 这个过程本身也需要通过 enhancer 参数。
至于 decorator 和 enhancer 之间的耦合机制,文章中详细解释了 createDecoratorForEnhancer 和 createPropDecorator 函数,通过这些函数我们能够了解到它们是如何将 decorator 和 enhancer 联系起来的。
接下来,文章深入分析了 decorator 的作用机制,包括它如何决定是否立即执行,以及在不立即执行时如何将创建 prop 的相关信息保存下来。通过 initializeInstance 函数,我们了解了如何解决 # 问题,这涉及到如何正确处理那些在创建时未被立即执行的 prop。
最终,通过为 target 对象创建 ObservableObjectAdministration 管理对象,并通过 $mobx 和 target 属性将它们关联起来,我们完成了 observableObject 的创建。如果传入的 properties 不为空,则使用 extendObservableObjectWithProperties 来初始化。这里的代码逻辑相对简单,主要遍历 properties 中的所有键并调用对应的 decorator。
文章还指出,虽然在第一条路径中,使用 Object.defineProperty 重写了 prop 的 getter 和 setter,但在 MobX 4 及以下版本中,使用 Proxy 来实现 observableObject 的源码超市陈列培训逻辑更为常见。Proxy 特性在 ES6 引入后,提供了更强大的能力来劫持对象的行为,不仅限于 getter 和 setter,还包括对象的其他行为。
最后,文章总结了使用 Proxy 方案的优点,包括能够更全面地劫持对象的行为,而不仅仅是属性的 getter 和 setter。Proxy 方案在实现双向绑定时,能够提供更灵活和强大的功能。同时,文章也提到了两种方案的局限性,尤其是在处理对象属性的可观察性方面,Proxy 方案在某些情况下可能更具优势。
Vue2源码学习笔记 - 7.响应式原理一基础
深入研究 Vue 的响应式核心,了解响应式机制在 Vue 中的核心地位。Vue 的响应式原理,让数据模型简单直接地管理状态,无需侵入性操作。
当你将普通 JavaScript 对象作为 Vue 实例的 data 选项时,Vue 会遍历对象属性并使用 Object.defineProperty 转换为 getter 和 setter。此特性仅在 ES5 中可用,不支持 IE8 及以下浏览器。
这些 getter 和 setter 在内部追踪依赖,当属性被访问或修改时,会通知 Vue。类似于 PHP 的魔术方法或 Java 的 getXXX\setXXX,但实现上存在差异。Java 可能拥有更接近的实现,比如 CGLib。
每个 Vue 组件实例对应一个 watcher,记录接触过的数据属性为依赖。当依赖项的 setter 触发时,watcher 被通知,组件重新渲染。
简单 demo 通过 defineReactive 实现响应式设置,允许访问 data 中的属性,设值触发 setter,引用触发 getter。此方法依赖于 Object.defineProperty,是响应式原理的核心。
Proxy 是源码分享故事大全 ES 定义的类,用于创建对象代理,实现基本操作拦截和自定义。通过简单的 demo 可见,更新和引用数据时会调用 setter/getter 方法。Vue2 使用 Proxy,但用途不多。
总结,学习 Object.defineProperty 和 Proxy 实现响应式的底层方法。它们在数据更新和引用时触发特定方法,执行期望的操作实现响应式。下篇深入 Vue 响应式实现。
UGUI 源码笔记(一)文件结构和部分组件使用
探讨UGUI源码之谜:深度解析文件结构与关键组件
本文将为您揭秘Unity3D UI系统UGUI的底层细节。
部分一:源码与实现解析
UGUI是基于三维网格系统构建的UI库,源码地址。
构建图元时,先生成一个方形网格,绑定材质球,后者存放要显示的图像。性能挑战:材质球和网格渲染过量,drawcell时间长。
部分二:源码结构探索
以Unity版本.1为例,文件结构被清晰地划分。
Canvas作为核心组件,类比为画布,内置了提升效率的合并网格功能。
Render Mode描述了Canvas的渲染模式;Canvas Scale组件允许您调整Canvas中元素的比例。
UI Scale Mode提供了针对屏幕大小的适应性设置,包括ScreenMatchMode.MatchWidthOrHeight选项。
以设备与游戏屏幕比例为例,计算合适的MatchWidthOrHeight值,通过对数空间转换确保视觉平衡。
部分三:UI元素组件剖析
Image与RawImage组件是展示的基石。
它们之间有显著区别:小尺寸图像适合使用Image,大尺寸则推荐RawImage以提高性能。
当处理大量相似类型但数量较少的时,通常选择RawImage,以减少内存消耗。
部分四:RectTransform:UI元素摆放的秘密
尽管RectTransform属于Unity内部类,但在UGUI中扮演着核心角色,用于定义UI元素的位置、大小与旋转。
锚点Anchors决定子节点的对齐,设置时以父节点的比例计算。
Anchors Presets工具提供了常用的布局选择,连带调整Pivot与位置时更为便捷。
Pivot作为物体自身的支点,影响物体的旋转、缩放与位置调整。
Vuex 4源码学习笔记 - mapState、mapGetters、mapActions、mapMutations辅助函数原理(六)
在前一章中,我们通过了解Vuex的dispatch功能,逐步探索了Vuex数据流的核心工作机制。通过这一过程,我们对Vuex的整体运行流程有了清晰的把握,为深入理解其细节奠定了基础。本章节,我们将聚焦于Vuex的辅助函数,包括mapState、mapGetters、mapActions、mapMutations以及createNamespacedHelpers,这些函数旨在简化我们的开发流程,使其更符合实际应用需求。
请注意,这些辅助函数在Vue 3的Composition API中不适用,因为它们依赖于组件实例(this),而在Setup阶段,this尚未被创建。因此,它们仅适用于基于选项的Vue 2或Vue 3经典API。
以mapState为例,它允许我们以计算属性的形式访问Vuex中的状态。当组件需要获取多个状态时,通过mapState生成的计算属性可以显著减少代码冗余。若映射的计算属性名称与state子节点名称相同,只需传入字符串数组。此外,通过对象展开运算符,我们能轻松地在已有计算属性中添加新的映射。
深入代码层面,mapState的核心功能在src/helpers.js文件中得以实现。通过normalizeNamespace函数统一处理命名空间和map数据,然后利用normalizeMap函数将数组或对象格式数据标准化,最终返回一个封装后的函数对象。通过这种方式,mapState有效简化了状态访问的实现。
mapGetters、mapMutations、mapActions遵循相似的模式,通过normalizeNamespace统一输入,然后使用normalizeMap统一数据处理,最后返回对象格式的函数集合,支持对象展开运算符的使用。这些函数简化了获取、执行actions和mutations的过程。
createNamespacedHelpers则是为管理命名空间模块提供便利。通过传入命名空间值,它生成一组组件绑定辅助函数,简化了针对特定命名空间的模块操作。此函数通过bind方法巧妙地将namespace参数绑定到返回的函数集合中,实现了高效、灵活的命名空间管理。
本章节对mapState的实现原理进行了深入分析,并展示了其余辅助函数的相似之处。通过理解这些函数的工作机制,我们能更高效地应用Vuex,优化组件间的交互与状态管理。利用这些工具,开发者能够更专注于业务逻辑的实现,而不是繁琐的状态获取和管理。
在探索更多前端知识的旅程中,让我们一起关注公众号小帅的编程笔记,每天更新精彩内容,与编程社区一同成长。
EasyLogger源码学习笔记(1)
在编程中,预处理器通过宏定义执行特定的逻辑。使用`#ifdef`和`#else`可以实现条件编译。当`#ifdef _XXXX`中的标识符_XXXX被`#define`命令定义时,编译器将执行`#ifdef`后的程序段1,否则执行`#else`后的程序段2。`#ifndef _XXXX`则表示如果标识符未被定义,则执行程序段1,反之执行程序段2。
ANSI C宏提供了多种实用信息,如`__DATE__`返回当前日期,`__TIME__`返回当前时间,`__FILE__`包含当前文件名,`__LINE__`包含当前行号。`__STDC__`常量用于判断程序是否遵循ANSI C标准。`__FUNCTION__`宏在预编译时返回所在函数的名称。
宏参数的处理可以通过`#`将参数变为字符串,使用`##`将两个宏参数连接起来。`__VA_ARGS__`是一个可变参数宏,需配合`define`使用,将宏左侧的`..`内容原样复制到右侧。
`#if defined`和`#if !defined`在功能上相似,都用于判断宏是否定义。`#error`指令在编译时生成错误消息并停止编译,用于警告开发者。
`extern`关键字用于引用其他文件中的函数或全局变量。例如`extern ElogErrCode elog_port_init(void);`声明了一个名为`elog_port_init`的外部函数,调用时需要指明返回值类型和参数。
在多线程编程中,使用`sched_param`结构来管理线程调度参数。`sem_t`表示信号量,用于实现互斥和同步。`pthread_attr_setschedpolicy(&thread_attr, SCHED_RR);`设置进程调度策略为实时轮转调度。
`SCHED_OTHER`默认分时调度策略,`SCHED_FIFO`采用先进先出策略,而`SCHED_RR`是`SCHED_FIFO`的增强版,提供实时轮转功能。使用`sched_get_priority_max(int policy);`和`sched_get_priority_min(int policy);`函数可以获取线程可设置的最高和最低优先级,其中策略参数即上述三种调度策略的宏定义。
`pthread_attr_setschedparam(&thread_attr, &thread_sched_param);`用于设置线程的优先级。通过这些函数,开发者可以精细地控制线程调度,提高程序性能。
easylogging源码学习笔记(6)
`LOG` 是默认日志、CLOG自定义日志、LOG_IF条件日志
特殊日志
LOG_EVERY_N、LOG_AFTER_N、LOG_N_TIMES
for (int i = 1; i <= ; ++i) {
LOG_EVERY_N(2, INFO) << "Logged every second iter";
}// 5 logs written; 2, 4, 6, 7,
for (int i = 1; i <= ; ++i) {
LOG_AFTER_N(2, INFO) << "Log after 2 hits; " << i;
}// 8 logs written; 3, 4, 5, 6, 7, 8, 9,
for (int i = 1; i <= ; ++i) {
LOG_N_TIMES(3, INFO) << "Log only 3 times; " << i;
}// 3 logs writter; 1, 2, 3
条件日志和特殊日志可以搭配使用
* `VLOG_IF(condition, verbose-level)`
* `CVLOG_IF(condition, verbose-level, loggerID)`
* `VLOG_EVERY_N(n, verbose-level)`
* `CVLOG_EVERY_N(n, verbose-level, loggerID)`
* `VLOG_AFTER_N(n, verbose-level)`
* `CVLOG_AFTER_N(n, verbose-level, loggerID)`
* `VLOG_N_TIMES(n, verbose-level)`
* `CVLOG_N_TIMES(n, verbose-level, loggerID)`
日志详细等级判定
if (VLOG_IS_ON(2)) {
// Verbosity level 2 is on for this file
}
性能追踪
* `TIMED_FUNC(obj-name)`
* `TIMED_SCOPE(obj-name, block-name)`
* `TIMED_BLOCK(obj-name, block-name)`
这些宏实际上都是关于el::base::type::PerformanceTrackerPtr,一个指向el::base::PerformanceTracker的指针
#if defined(ELPP_FEATURE_ALL) || defined(ELPP_FEATURE_PERFORMANCE_TRACKING)
PerformanceTracker::PerformanceTracker(const std::string& blockName,
base::TimestampUnit timestampUnit,
const std::string& loggerId,
bool scopedLog, Level level) :
m_blockName(blockName), m_timestampUnit(timestampUnit), m_loggerId(loggerId), m_scopedLog(scopedLog),
m_level(level), m_hasChecked(false), m_lastCheckpointId(std::string()), m_enabled(false) {
#if !defined(ELPP_DISABLE_PERFORMANCE_TRACKING) && ELPP_LOGGING_ENABLED
// We store it locally so that if user happen to change configuration by the end of scope
// or before calling checkpoint, we still depend on state of configuration at time of construction
el::Logger* loggerPtr = ELPP->registeredLoggers()->get(loggerId, false);
m_enabled = loggerPtr != nullptr && loggerPtr->m_typedConfigurations->performanceTracking(m_level);
if (m_enabled) {
base::utils::DateTime::gettimeofday(&m_startTime);
}
#endif // !defined(ELPP_DISABLE_PERFORMANCE_TRACKING) && ELPP_LOGGING_ENABLED
}
在构造函数中获取一个时间,
PerformanceTracker::~PerformanceTracker(void) {
#if !defined(ELPP_DISABLE_PERFORMANCE_TRACKING) && ELPP_LOGGING_ENABLED
if (m_enabled) {
base::threading::ScopedLock scopedLock(lock());
if (m_scopedLog) {
base::utils::DateTime::gettimeofday(&m_endTime);
base::type::string_t formattedTime = getFormattedTimeTaken();
PerformanceTrackingData data(PerformanceTrackingData::DataType::Complete);
data.init(this);
data.m_formattedTimeTaken = formattedTime;
PerformanceTrackingCallback* callback = nullptr;
for (const std::pair& h
: ELPP->m_performanceTrackingCallbacks) {
callback = h.second.get();
if (callback != nullptr && callback->enabled()) {
callback->handle(&data);
}
}
}
}
#endif // !defined(ELPP_DISABLE_PERFORMANCE_TRACKING)
}
在析构函数中获取一个时间,处理时间data,使用PerformanceTrackingCallback类型指针callback,并在callback->handle(&data)中处理输出。
由于定义了ELPP_FEATURE_PERFORMANCE_TRACKING,因此在初始化(INITIALIZE_EASYLOGGINGPP)中实际上是安装了一个base::DefaultPerformanceTrackingCallback。
在PerformanceTracker类的handle函数中,callback是一个PerformanceTrackingCallback类型指针,由于安装的是DefaultPerformanceTrackingCallback对象,因此是一个基类指针指向了派生类对象。处理输出的逻辑在DefaultPerformanceTrackingCallback类的handle函数中。
DefaultPerformanceTrackingCallback类的handle函数首先会将数据成员m_data的指针赋值给函数参数,并创建一个base::type::stringstream_t类型的对象ss用于构建输出内容。根据m_data的dataType,输出不同的信息。在输出时,会使用el::base::Writer类构造并输出内容。
EasyLogger源码学习笔记(5)
在EasyLogger源码的学习中,我们了解到日志对象使用了互斥锁以确保同一时刻只有一个线程能进行操作,保证了日志管理的安全性与高效性。
对于异步输出,EasyLogger通过信号量实现了优化。当需要等待执行时,某个线程会被阻塞,以减少CPU的占用。这一特性允许用户单独设置异步输出的日志等级,提高系统的灵活性与可控性。
在文件输出时,使用了信号量集合,其中仅包含一个信号量。这一设计确保了同时只有一个线程能向文件中写入日志,避免了多线程并发写入导致的文件混乱。
日志输出的多样选择体现了EasyLogger的灵活性,无论是输出到文件还是串口,都可以根据需要配置是否采用异步输出,以适应不同的应用场景与性能需求。
此外,sem_post函数用于解锁由semby指定的信号量,执行对特定信号量的解锁操作。而semop函数则用于执行一组预先定义的信号量操作,适用于对多个信号量进行原子性操作。
在信号量集合仅包含一个信号量的情况下,使用sem_post函数进行操作可能直接替代使用semop函数。这一设计简化了信号量管理,提高了代码的可读性和效率。
EasyLogger源码学习笔记(4)
setbuf函数用于开启或关闭缓冲机制,关闭时使用setbuf(stdout, NULL);。
在编程中,unlikely(x) 和 likely(x) 函数通过宏定义 __builtin_expect(!!(x), 1) 和 __builtin_expect(!!(x), 0) 实现,用以帮助优化编译器,实现等价于if(a)但更高效的条件判断。
semget()函数用于创建或获取信号量,其原型为 int semget(key_t key, int num_sems, int sem_flags)。它接受一个键值、指定信号量数量及标志位,成功时返回信号标识符,失败时返回-1。
semctl()函数用于设置或获取信号量的值,而semop()函数则用于执行信号量的P操作或V操作。
信号量在共享内存管理中扮演关键角色,内核维护一个名为shmid_ds的数据结构,用于管理共享内存段。
利用fseek()函数,可以设置文件流的位置,通过参数offset和whence来确定查找位置的偏移量。
a+方式打开文本文件,允许读写,若文件不存在则创建,读取从头开始,写入只能追加。
sem_post函数(int sem_post(sem_t *sem);)将信号量值增加1,当线程阻塞在该信号量上时,调用此函数会使一个线程解除阻塞,选择机制由线程调度策略决定。
sem_wait函数(int sem_wait(sem_t * sem);)则将信号量值减去1,但需等待信号量值非零时才开始减法操作。
一种应用方法是利用信号量实现类似于信号传递的功能,某线程在特定条件下执行任务,其他线程通过调用sem_post()使信号量加一,该线程在调用sem_wait()后解除阻塞,继续执行。
2024-11-20 18:32
2024-11-20 18:25
2024-11-20 17:24
2024-11-20 17:21
2024-11-20 17:15
2024-11-20 17:08
2024-11-20 17:04
2024-11-20 16:03