1.Golang sync.Cond 条件变量源码分析
2.一文详解RocketMQ-Spring的生产什意思源码解析与实战
3.RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
4.浅析源码 golang kafka sarama包(一)如何生产消息以及通过docker部署kafka集群with kraft
Golang sync.Cond 条件变量源码分析
sync.Cond 是 Golang 标准库 sync 包中一个关键的条件变量类型,用于在多个goroutine间协调等待特定条件。全生它常用于生产者-消费者模型等场景,代码确保在某些条件满足后才能继续执行。生产什意思本文基于 go-1. 源码,全生深入解析 sync.Cond 的代码学习建站 源码核心机制与用法。
sync.Cond 的生产什意思基本用法包括创建条件变量、等待唤醒与发送信号。全生使用时,代码通常涉及到一个互斥锁(Locker)以确保并发安全性。生产什意思首先,全生通过`sync.NewCond(l Locker)`创建条件变量。代码其次,生产什意思`cond.Wait()`使当前执行的全生goroutine等待直到被唤醒,期间会释放锁并暂停执行。代码小说电影源码`cond.Signal()`和`Broadcast()`用于唤醒等待的goroutine,前者唤醒一个,后者唤醒所有。
在底层实现中,sync.Cond 采用了一种称为 notifyList 的数据结构来管理等待和唤醒过程。notifyList 由一组元素构成,其中`wait`和`notify`表示当前最大ticket值和已唤醒的最大ticket值,而`head`和`tail`则分别代表等待的goroutine链表的头和尾。在`Wait`操作中,每次调用`runtime_notifyListAdd`生成唯一的ticket,并将当前goroutine添加到链表中。当调用`Signal`或`Broadcast`时,会查找并唤醒当前`notify`值对应的等待goroutine,并更新`notify`值。打板源码
信号唤醒过程确保了FIFO的顺序,即最早等待的goroutine会首先被唤醒。这种机制有效地防止了并发操作下列表的乱序,确保了正确的唤醒顺序,尽管在实际执行中,遍历整个列表的过程在大多数情况下效率较高。
在使用sync.Cond时,需注意避免潜在的死锁风险和错误的唤醒顺序。确保合理管理互斥锁的使用,以及在适当情况下使用`Signal`或`Broadcast`来唤醒等待的goroutine。正确理解和应用sync.Cond,能有效提升并发编程的效率与稳定性。
一文详解RocketMQ-Spring的源码解析与实战
RocketMQ-Spring源码解析与实战概览
这篇文章详细阐述了在Spring Boot项目中如何运用rocketmq-spring SDK进行消息收发,以及开发者视角下SDK的AI网站源码设计逻辑。通过一步步操作流程,理解其在生产者和消费者端的实际应用。SDK简介
rocketmq-spring本质上是一个Spring Boot启动器,通过“约定优于配置”的理念简化集成过程。只需在pom.xml中引入依赖,并在配置文件中进行简单的配置,如添加名字服务地址和生产者组。配置与操作流程
1. 在pom.xml引入依赖并配置,如生产者和消费者配置。生产者配置:包含名字服务地址和生产者组
消费者配置:实现消息监听器
核心源码分析
rocketmq-spring的核心模块包括启动器、SDK模块和示例代码模块,源码中着重解析了RocketMQTemplate类和消费者启动机制,如生产者模板封装和消费者消息处理逻辑。生产者模板与消费者启动
生产者:通过RocketMQProperties对象绑定配置,病案翻拍源码创建生产者Bean并整合到RocketMQTemplate中
消费者:通过ListenerContainerConfiguration自动启动,封装RocketMQListener的消费逻辑
进阶学习
要深入学习rocketmq-spring,可以从实际操作、模块设计、starter设计思路和源码理解四个方面逐步提升。RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
Broker在RocketMQ架构中扮演关键角色,主要负责存储消息,其核心任务在于持久化消息。消息通过生产者发送给Broker,而消费者则从Broker获取消息。Broker的物理部署架构图清晰展示了这一过程。
从配置文件角度,我们深入探讨Broker的存储设计,重点关注以下几个方面:消息发送、消息协议、消息存储与检索、消费队列维护、消息消费与重试机制。深入分析Broker内部实现,包括消息发送过程、获取topic路由信息、选择消息队列以及发送消息至特定Broker。
消息发送过程包括参数解析、发送方式选择、回调函数配置以及超时时间设定。同步消息发送流程主要分为获取路由信息、选择消息队列、发送消息、更新失败策略与处理同步调用方式。获取路由信息过程包括从本地缓存尝试获取、从NameServer获取配置信息更新缓存,以及针对特定或默认topic的路由信息查询。
选择消息队列时考虑Broker负载均衡,通过轮询机制获取下一个可用消息队列。选择队列逻辑涉及发送失败延迟规避机制,确保选择的Broker正常,并根据Broker状态进行排序后选择一个队列。消息发送至指定Broker,使用长连接发送并存储消息,同步消息发送包含重试机制,异步消息发送则在回调中处理重试。
思考题:分析消息发送异常处理,包括NameServer宕机与Broker挂机情况。NameServer宕机时,生产者可利用本地缓存继续发送消息,而Broker挂机会导致消息发送失败,但通过故障延迟机制可确保高可用性设计。理解这些机制与流程,有助于深入掌握RocketMQ的同步消息发送原理与高可用设计。
浅析源码 golang kafka sarama包(一)如何生产消息以及通过docker部署kafka集群with kraft
本文将深入探讨Golang中使用sarama包进行Kafka消息生产的过程,以及如何通过Docker部署Kafka集群采用Kraft模式。首先,我们关注数据的生产部分。
在部署Kafka集群时,我们将选择Kraft而非Zookeeper,通过docker-compose实现。集群中,理解LISTENERS的含义至关重要,主要有几个类型:
Sarama在每个topic和partition下,会为数据传输创建独立的goroutine。生产者操作的起点是创建简单生产者的方法,接着维护局部处理器并根据topic创建topicProducer。
在newBrokerProducer中,run()方法和bridge的匿名函数是关键。它们反映了goroutine间的巧妙桥接,通过channel在不同线程间传递信息,体现了goroutine使用的精髓。
真正发送消息的过程发生在AsyncProduce方法中,这是数据在三层协程中传输的环节,虽然深度适中,但需要仔细理解。
sarama的架构清晰,但数据传输的核心操作隐藏在第三层goroutine中。输出变量的使用也有讲究:当output = p.bridge,它作为连接内外协程的桥梁;output = nil则关闭channel,output = bridge时允许写入。