1.Opencv中的内参内参两种去畸变函数
2.opencv棋盘格实现相机标定(附源码)
3.易航智能——专注量产的自动驾驶解决方案供应商
4.相机标定之张正友标定法数学原理详解(含python源码)
Opencv中的两种去畸变函数
在探讨 OpenCV 中的两种去畸变函数前,我们首先需要了解畸变校正和损失有效像素原理。网站在相机标定后,源码OpenCV 提供了两种主要方法来处理图像畸变:直接使用 cv::undistort() 函数得到去畸变图像,软件或通过 cv::getOptimalNewCameraMatrix() 获取新的内参内参矩阵,再利用 cv::initUndistortRectifyMap() 和 cv::remap() 函数映射原图至新图。网站源码资本 人力 彭
在比较两种方法的源码差异之前,让我们先对 getOptimalNewCameraMatrix() 函数进行简要介绍。软件函数参数 alpha 对结果影响重大。内参内参当 alpha 为 0 时,网站生成的源码矩阵为内矩阵,即不包含任何黑色边框的软件图像大小,以此重新计算内参。内参内参如果 alpha 为 1,网站则生成的源码矩阵为外矩阵,等同于原图大小。当 alpha 在 0 到 1 之间时,将按照比例重新计算内参。内矩阵等同于不含任何黑色边框的图幅大小,而外矩阵等同于原图大小。
深入探究 getOptimalNewCameraMatrix() 的snow源码实现过程,我们发现其 inner 和 outer 矩阵的生成与原始内参和畸变系数之间存在密切联系。通过在 icvGetRectangles() 函数中生成 9x9 个点,并对这些点进行去畸变转换,我们得到外围矩阵 oX0, oY0, oX1, oY1 及内围矩阵。这些矩阵的生成有助于理解原始图像的畸变情况。
在实际应用中,如处理 Ladybug 相机时,可以自动获得去畸变图像,但通常包含黑色边框。为了去除这些边框,尝试将 alpha 设为 0 来得到去黑边图像。然而,当只提供相机内参而无畸变系数时,使用空畸变系数会导致内参不变。通过深入研究源码,我们发现,在畸变系数为空时,inner 与 outer 矩阵大小相同,导致 fx, fy, cx, cy 参数保持不变。因此,laypage 源码为了获得理想的去黑边图像,需要手动截取可视范围,并基于新左上角重新计算 cx, cy,从而得到新的去黑边图像和对应的新相机内参。
综上所述,理解 OpenCV 中的两种去畸变方法有助于在实际项目中灵活选择合适的处理策略。通过分析内参、畸变系数和生成的矩阵,可以更有效地处理和优化图像,满足不同应用需求。
opencv棋盘格实现相机标定(附源码)
在理解相机标定的原理前,必须明确相机模型的四个坐标系:像素坐标系、图像坐标系、相机坐标系以及世界坐标系。像素坐标系的单位为像素,而图像坐标系则为归一化单位,具体单位(如mm或m)由深度值决定。畸变图像坐标通过相机标定得到的畸变参数校正,从而帮助理解内参矩阵与畸变系数的角色。图像坐标系与相机坐标系的lotserver 源码转换需注意,这里的[Xc,Yc,Zc]代表物体在相机坐标系下的位置。相机坐标系与世界坐标系的转换则需理解相机位姿。
使用OpenCV实现相机标定,首步是准备*7的棋盘格图像,可通过链接获取。确保从不同角度拍摄多张棋盘格图像,关键在于每张图像的角点应保持一致。不一致的图像应排除,确保图像走向一致。主要使用的OpenCV函数用于处理图像与坐标系的转换,具体函数使用可查阅相关文档。
相机标定的结果通过重投影误差评估。核心代码简化了标定过程,有效提高效率。运行结果展示了棋盘格图像与标定后的结果对比,直观展示了标定效果。项目源码在链接中提供,适用于Ubuntu .系统。使用者只需打印棋盘格,将拍摄的sslsocketfactory源码存储于指定文件夹,即可完成标定。
易航智能——专注量产的自动驾驶解决方案供应商
北京易航远智科技有限公司自年成立以来,致力于自动驾驶系统的自主研发,成为中国首批自动驾驶创业公司之一。公司获得了包括经纬中国、源码资本、明势资本等知名创投机构的支持,以及北汽产投、广汽资本和理想汽车等主机厂的战略投资。
易航智能自年起便涉足自动驾驶Tier1量产项目,至今已拥有万辆整车量产经验,积累了超过亿公里的驾驶数据。公司拥有感知、决策规划控制、软硬件开发、测试标定等全栈自研能力,并率先实现了NOA行泊一体、城市全场景FSD等高阶功能。
易航智能团队在感知、决策、控制、故障诊断等核心算法方面拥有深厚的技术实力。公司主营自动驾驶解决方案(ADAS、NOA、FSD)、域控制器、摄像头模组、驾驶算法与软件等产品,并在北京、苏州设有研发中心和工厂,固安设有测试基地。主要客户包括理想汽车、北汽集团、江铃雷诺、上汽大通、一汽大众、威马汽车等主机厂。
易航智能汇集了汽车行业精英和计算机视觉、深度学习领域专家,硕士及以上学历人员占比超过一半。团队成员主要来自国内外主机厂、Tier 1供应商、国内外顶尖科研机构和伯克利、剑桥、清华、北大、北航等知名院校。
苏州平方米的一期生产工厂已建成并投入使用,拥有全球领先的智能化、自动化自动驾驶专用摄像头及域控制器生产线,产品已在多款车型中前装量产。
公司还建立了全球领先的摄像头调试和测试实验室,产线可进行AA和内参标定,已量产1M、2M、8M前视、侧视、环视摄像头,FOV覆盖°-°。
易航智能已通过IATF 、ISO、ISO 、ISO等国际认证。
相机标定之张正友标定法数学原理详解(含python源码)
探索相机标定的数学奥秘:张正友方法详解(附Python实现) 相机标定,如同解构一个复杂的光学迷宫,其核心目标在于揭示相机内部参数的神秘面纱,以及它与现实世界之间的桥梁——外参矩阵。在这个过程中,张正友标定法犹如一个精密的指南针,引领我们通过棋盘格标定板,找到内在与外在的交汇点。 理解标定原理- 相机标定的首要任务是理解相机的成像原理,包括理解相机内部的内参矩阵,它定义了镜头的几何特性,以及外参矩阵,描述了相机与三维空间的相对位置。畸变矫正则是为消除镜头对图像几何形状的扭曲影响。
张正友法的基石- 张正友方法以棋盘格标定板为关键工具,通过在不同角度拍摄的图像中识别出其角点,这些角点在世界坐标系下的坐标与像素坐标之间建立起桥梁。通过一组方程,我们求解出内外参数矩阵,从而完成标定。
解码标定步骤1. 世界坐标到像素坐标: 从至少4个标定板角点的物理坐标出发,构建齐次矩阵,为后续计算奠定基础。
2. 内参矩阵的求解: 利用至少3张的6个特征点,利用正交关系找到旋转矩阵,进而计算出内参矩阵,赋予相机清晰的几何视野。
3. 外参矩阵的揭秘: 保持内参不变,每张的外参矩阵通过相机的运动和世界坐标系的变化来计算,它们描绘了相机在空间中的运动轨迹。
4. 畸变矫正的钥匙: 仅考虑径向畸变,通过角点坐标构建方程,运用最小二乘法求得矫正参数,使图像恢复几何清晰。
张正友方法巧妙地将世界坐标系的标定板角点映射到相机坐标系,通过系数矩阵逼近畸变,但需要借助L-M算法进行优化,以减小误差。 实践与代码实际操作中,首先要拍摄多角度的棋盘格图像,然后通过特征检测提取角点,接着运用OpenCV的Python接口进行内参和外参的求解,最后利用优化算法调整畸变参数。每一步都犹如解开一个数学谜题,一步步将复杂的世界图像简化为精确的数学模型。
这就是张正友标定法的数学原理和Python实践的概览,它在相机标定领域中发挥着不可或缺的作用,帮助我们理解并掌握这个关键的图像处理技术。