【海第授权源码】【spring源码必读】【算法源码交付】bn源码

时间:2025-01-28 01:13:11 编辑:eclipse 调试 源码 来源:elgg源码

1.PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解
2.BatchNorm理解(含Pytorch部分源码)
3.DenseNet源码解读(pytorch官方)
4.caffe 中为什么bn层要和scale层一起使用
5.深入理解Pytorch的源码BatchNorm操作(含部分源码)
6.PyTorch 源码分析(三):torch.nn.Norm类算子

bn源码

PyTorch 源码解读之 BN & SyncBN:BN 与 多卡同步 BN 详解

       BatchNorm原理

       BatchNorm最早在全连接网络中提出,旨在对每个神经元的源码输入进行归一化操作。在卷积神经网络(CNN)中,源码这一原理被扩展为对每个卷积核的源码输入进行归一化,即在channel维度之外的源码所有维度上进行归一化。BatchNorm带来的源码海第授权源码优势包括提高网络的收敛速度、稳定训练过程、源码减少过拟合现象等。源码

       BatchNorm的源码数学表达式为公式[1],引入缩放因子γ和移位因子β,源码作者在文章中解释了它们的源码作用。

       PyTorch中与BatchNorm相关的源码类主要位于torch.nn.modules.batchnorm模块中,包括如下的源码类:_NormBase、BatchNormNd。源码

       具体实现细节如下:

       _NormBase类定义了BN相关的源码一些属性。

       初始化过程。

       模拟BN的forward过程。

       running_mean、running_var的更新逻辑。

       γ、spring源码必读β参数的更新方式。

       BN在eval模式下的行为。

       BatchNormNd类包括BatchNorm1d、BatchNorm2d、BatchNorm3d,它们的区别在于检查输入的合法性,BatchNorm1d接受2D或3D的输入,BatchNorm2d接受4D的输入,BatchNorm3d接受5D的输入。

       接着,介绍SyncBatchNorm的实现。

       BN性能与batch size密切相关。在batch size较小的场景中,如检测任务,内存占用较高,单张显卡难以处理较多,导致BN效果不佳。SyncBatchNorm提供了解决方案,其原理是算法源码交付所有计算设备共享同一组BN参数,从而获得全局统计量。

       SyncBatchNorm在torch/nn/modules/batchnorm.py和torch/nn/modules/_functions.py中实现,前者负责输入合法性检查以及参数设置,后者负责单卡统计量计算和进程间通信。

       SyncBatchNorm的forward过程。

       复习方差计算方式。

       单卡计算均值、方差,进行归一化处理。

       同步所有卡的数据,得到全局均值mean_all和逆标准差invstd_all,计算全局统计量。

       接着,介绍SyncBatchNorm的backward过程。

       在backward过程中,需要在BN前后进行进程间通信。这在_functions.SyncBatchNorm中实现。

       计算weight、bias的上货提醒源码梯度以及γ、β,进一步用于计算梯度。

BatchNorm理解(含Pytorch部分源码)

       深度学习中,数据归一化是关键。神经网络学习数据分布以在测试集上达到泛化效果。然而,若每个batch输入数据分布不同,即Covariate Shift,这会带来训练挑战。数据经过多层网络后,分布发生改变,形成Internal Covariate Shift,这进一步增加了下层网络学习的难度。为解决中间层Internal Covariate Shift问题,引入了Batch Normalization(BN)操作。

       BN算法流程如下:

       (1)计算输入批量数据的均值。

       (2)计算输入批量数据的方差。

       (3)对每个数据进行归一化。

       (4)引入缩放变量和平移变量,validator框架源码通过训练更新,计算归一化后的值。

       BN中均值方差计算基于张量数据,通常维度为[N, H, W, C]。其中N为batch_size,H和W为特征图尺寸,C为通道数。均值计算是每个通道内数字总和除以[N, H, W]。例如,对于[2,2,2,3]输入,代表2个batch,每个batch有3个特征图(通道数为3),每个特征图大小为2*2。以通道1为例,计算步骤如下:

       均值计算公式为:均值=(所有数字总和)/ [N, H, W]。

       最终获得三个通道的均值和方差,网络更新参数,为每一个channel对应一个缩放变量和平移变量。

       在Pytorch中,BN通过_NormBase类和_BatchNorm类实现。_NormBase类定义BN相关的属性,_BatchNorm类继承自_NormBase,是BatchNorm2d实际调用的类。具体源码包括定义属性、计算均值和方差、归一化以及参数更新等关键步骤。

DenseNet源码解读(pytorch官方)

       DenseNet源码解析:一个基于PyTorch实现的深度密集连接网络模型,提供了一系列预训练模型选项。首先,我们引入必要的库,如ReLU、卷积层、批量归一化和函数模块。DenseNet的核心是通过`_bn_function_factory`函数拼接前一层的特征,然后通过一系列的卷积块进行特征提取,包括1x1卷积、ReLU激活和3x3卷积,形成了密集层 `_DenseLayer`。该层可以设置内存高效模式以节省内存。在 `_DenseBlock` 中,通过循环堆叠指定数量的密集层,并在每个块之间插入降采样层 `_Transition` 以控制通道数量的增长。模型类 `DenseNet` 建立了整套网络结构,包括初始卷积层、多个密集块、过渡层以及最终的全局平均池化和全连接层。提供了针对不同配置(如densenet、densenet等)的预训练模型加载方法 `_densenet`,用户可以根据需求选择并加载预训练权重。

       每个模型函数,如`densenet`,接受参数如预训练状态、进度条显示等,允许用户根据需要定制网络行为。总的来说,DenseNet的设计旨在通过密集连接和递增特征组合来提升模型性能,适用于图像识别等计算机视觉任务。

caffe 中为什么bn层要和scale层一起使用

       1) 输入归一化 x_norm = (x-u)/std, 其中u和std是个累计计算的均值和方差。

       2)y=alpha×x_norm + beta,对归一化后的x进行比例缩放和位移。其中alpha和beta是通过迭代学习的。

       é‚£ä¹ˆcaffe中的bn层其实只做了第一件事,scale层做了第二件事,所以两者要一起使用。

       ä¸€ï¼Œåœ¨Caffe中使用Batch Normalization需要注意以下两点:

       1. 要配合Scale层一起使用。

       2. è®­ç»ƒçš„时候,将BN层的use_global_stats设置为false,然后测试的时候将use_global_stats设置为true。

       äºŒï¼ŒåŸºæœ¬å…¬å¼æ¢³ç†ï¼š

       Scale层主要完成 top=alpha∗bottom+betatop=alpha∗bottom+beta的过程,则层中主要有两个参数alphaalpha与betabeta,

       æ±‚导会比较简单。∂y∂x=alpha;∂y∂alpha=x;∂y∂beta=1。 需要注意的是alphaalpha与betabeta均为向量,针对输入的channelschannels进行的处理,因此不能简单的认定为一个floatfloat的实数。

       ä¸‰ï¼Œå…·ä½“实现该部分将结合源码实现解析scalescale层:

       åœ¨Caffe proto中ScaleParameter中对Scale有如下几个参数:

       1,基本成员变量,基本成员变量主要包含了Bias层的参数以及Scale层完成对应通道的标注工作。

       2,基本成员函数,主要包含了LayerSetup,Reshape ,Forward和Backward ,内部调用的时候bias_term为true的时候会调用biasLayer的相关函数。

       3,Reshape 调整输入输出与中间变量,Reshape层完成许多中间变量的size初始化。

       4,Forward 前向计算,前向计算,在BN中国紧跟着BN的归一化输出,完成乘以alpha与+bias的操作,由于alpha与bias均为C的向量,因此需要先进行广播。

       5,Backward 反向计算,主要求解三个梯度,对alpha 、beta和输入的bottom(此处的temp)。

深入理解Pytorch的BatchNorm操作(含部分源码)

       Pytorch中的BatchNorm操作在训练和测试模式下有所不同,特别是在涉及dropout时。Batch Normalization(BN)是深度学习中的重要技术,通过在神经网络中间层对输入数据进行标准化处理,解决协方差偏移问题。其核心公式包含对每个通道数据的均值和方差计算,规范化操作后进行仿射变换以保持模型性能。

       在BN中,需要关注的参数主要包括学习参数gamma和beta,以及动态统计的running_mean和running_var。在Pytorch的实现中,如nn.BatchNorm2d API,关键参数包括trainning(模型是否在训练模式)、affine(是否启用仿射变换)、track_running_stats(是否跟踪动态统计)和momentum(动态统计更新的权重)。

       训练状态会影响BN层的计算,当模型处于训练状态(trainning=True)时,running_mean和running_var会在每次前向传播(forward())中更新,而转为测试模式(mode.eval())则会冻结这些统计值。源码中的_NormBase类和_BatchNorm类定义了这些操作的细节,包括动态统计的管理。

       对于自定义BN,可以重载前向传播函数,改变规范化操作的细节。总的来说,理解Pytorch的BatchNorm操作,需关注其在训练和测试模式中的行为,以及与模型训练状态相关的关键参数。

PyTorch 源码分析(三):torch.nn.Norm类算子

       PyTorch源码详解(三):torch.nn.Norm类算子深入解析

       Norm类算子在PyTorch中扮演着关键角色,它们包括BN(BatchNorm)、LayerNorm和InstanceNorm。

       1. BN/LayerNorm/InstanceNorm详解

       BatchNorm(BN)的核心功能是对每个通道(C通道)的数据进行标准化,确保数据在每个批次后保持一致的尺度。它通过学习得到的gamma和beta参数进行缩放和平移,保持输入和输出形状一致,同时让数据分布更加稳定。

       gamma和beta作为动态调整权重的参数,它们在BN的学习过程中起到至关重要的作用。

       2. Norm算子源码分析

       继承关系:Norm类在PyTorch中具有清晰的继承结构,子类如BatchNorm和InstanceNorm分别继承了其特有的功能。

       BN与InstanceNorm实现:在Python代码中,BatchNorm和InstanceNorm的实例化和计算逻辑都包含对输入数据的2D转换,即将其分割为M*N的矩阵。

       计算过程:在计算过程中,首先计算每个通道的均值和方差,这是这些标准化方法的基础步骤。

       C++侧的源码洞察

       C++实现中,对于BatchNorm和LayerNorm,代码着重于处理数据的标准化操作,同时确保线程安全,通过高效的数据视图和线程视图处理来提高性能。