���� Դ��
在深入理解Python的回收回收垃圾回收机制之前,首先需明确两个核心概念——内存泄漏与内存溢出。源码源码
内存泄漏指的系统是程序在使用完毕后,未能释放的回收回收内存空间,导致这些空间长期被占用,源码源码造成系统资源浪费和性能下降。系统cssbox源码而内存溢出则发生在程序请求分配内存时,回收回收因系统资源不足而无法得到满足。源码源码
Python通过引用计数机制进行内存管理。系统在C语言源码中,回收回收每个对象都拥有一个引用计数器,源码源码用于统计被引用的系统次数。程序运行时,回收回收引用计数实时更新。源码源码当引用计数降为0时,系统对象将被自动回收,释放内存空间。使用sys.getrefcount()函数可以获取对象的引用计数值。
然而,引用计数机制在处理循环引用时存在问题。当两个对象相互引用,计数器无法降至0,导致内存泄漏。为解决此问题,Python采用标记-清除算法。该算法通过维护两个双端链表,分别存放需要扫描和已标记为不可达的对象。遍历容器对象,解除循环引用影响后,将未标记可达的对象移至回收列表。再次遍历时,移除未被引用的对象。
为了提高垃圾回收效率,Python引入分代回收机制。基于对象存在时间越长,成为垃圾的可能性越小的假设,减少回收过程中遍历的对象数,从而加快回收速度。
Python还通过缓存机制优化内存管理。源码安装教程视频当对象的引用计数为0时,不直接回收内存,而是将其放入缓存列表中进行缓存。对于特定数据类型,如整数、浮点数、列表、字典、元组,Python分别采用free_list、缓存池和驻留机制进行优化,以减少内存分配和释放的开销,提高程序性能。
具体来说,free_list机制用于缓存特定数据类型(如整数、浮点数)的内存地址,以便重复使用;缓存池预先创建并存储常用数据类型,如小整数、布尔类型、字符串;驻留机制通过字典存储相同值的变量,避免重复内存分配,实现内存节省。
通过上述机制,Python的垃圾回收和缓存机制有效管理内存资源,提升程序运行效率,同时避免内存泄漏和内存溢出问题。
OpenJDK-JVM 源码阅读 - ZGC - 并发标记 | 京东物流技术团队
ZGC简介:
ZGC是Java垃圾回收器的前沿技术,支持低延迟、大容量堆、染色指针、读屏障等特性,自JDK起作为试验特性,JDK起支持Windows,JDK正式投入生产使用。在JDK中已实现分代收集,预计不久将发布,性能将更优秀。
ZGC特征:
1. 低延迟
2. 大容量堆
3. 染色指针
4. 读屏障
并发标记过程:
ZGC并发标记主要分为三个阶段:初始标记、绝地最新透视源码并发标记/重映射、重分配。本篇主要分析并发标记/重映射部分源代码。
入口与并发标记:
整个ZGC源码入口是ZDriver::gc函数,其中concurrent()是一个宏定义。并发标记函数是concurrent_mark。
并发标记流程:
从ZHeap::heap()进入mark函数,使用任务框架执行任务逻辑在ZMarkTask里,具体执行函数是work。工作逻辑循环从标记条带中取出数据,直到取完或时间到。此循环即为ZGC三色标记主循环。之后进入drain函数,从栈中取出指针进行标记,直到栈排空。标记过程包括从栈取数据,标记和递归标记。
标记与迭代:
标记过程涉及对象迭代遍历。标记流程中,ZGC通过map存储对象地址的finalizable和inc_live信息。map大小约为堆中对象对齐大小的二分之一。接着通过oop_iterate函数对对象中的指针进行迭代,使用ZMarkBarrierOopClosure作为读屏障,实现了指针自愈和防止漏标。
读屏障细节:
ZMarkBarrierOopClosure函数在标记非静态成员变量的指针时触发读屏障。慢路径处理和指针自愈是核心逻辑,慢路径标记指针,快速路径通过cas操作修复坏指针,并重新标记。
重映射过程:
读屏障触发标记后,对象被推入栈中,下次标记循环时取出。ZGC并发标记流程至此结束。
问题回顾:
本文解答了ZGC如何标记指针、三色标记过程、如何防止漏标、指针自愈和并发重映射过程的问题。
扩展思考:
ZGC在指针上标记,视窗点歌5 源码当回收某个region时,如何得知对象是否存活?答案需要结合标记阶段和重分配阶段的代码。
结束语:
本文深入分析了ZGC并发标记的源码细节,对您有启发或帮助的话,请多多点赞支持。作者:京东物流 刘家存,来源:京东云开发者社区 自猿其说 Tech。转载请注明来源。
linux内核源码:内存管理——内存分配和释放关键函数分析&ZGC垃圾回收
本文深入剖析了Linux内核源码中的内存管理机制,重点关注内存分配与释放的关键函数,通过分析4.9版本的源码,详细介绍了slab算法及其核心代码实现。在内存管理中,slab算法通过kmem_cache结构体进行管理,利用数组的形式统一处理所有的kmem_cache实例,通过size_index数组实现对象大小与kmem_cache结构体之间的映射,从而实现高效内存分配。其中,关键的计算方法是通过查找输入参数的最高有效位序号,这与常规的0起始序号不同,从1开始计数。
在找到合适的kmem_cache实例后,下一步是通过数组缓存(array_cache)获取或填充slab对象。若缓存中有可用对象,则直接从缓存分配;若缓存已空,会调用cache_alloc_refill函数从三个slabs(free/partial/full)中查找并填充可用对象至缓存。在对象分配过程中,array_cache结构体发挥了关键作用,它不仅简化了内存管理,还优化了内存使用效率。
对象释放流程与分配流程类似,涉及数组缓存的管理和slab对象的回收。在cache_alloc_refill函数中,关键操作是检查slab_partial和slab_free队列,寻找空闲的对象以供释放。整个过程确保了内存资源的高效利用,避免了资源浪费。
总结内存操作函数概览,安卓ar源码栈与堆的区别是显而易见的。栈主要存储函数调用参数、局部变量等,而堆用于存放new出来的对象实例、全局变量、静态变量等。由于堆的动态分配特性,它无法像栈一样精准预测内存使用情况,导致内存碎片问题。为了应对这一挑战,Linux内核引入了buddy和slab等内存管理算法,以提高内存分配效率和减少碎片。
然而,即便使用了高效的内存管理算法,内存碎片问题仍难以彻底解决。在C/C++中,没有像Java那样的自动垃圾回收机制,导致程序员需要手动管理内存分配与释放。如果忘记释放内存,将导致资源泄漏,影响系统性能。为此,业界开发了如ZGC和Shenandoah等垃圾回收算法,以提高内存管理效率和减少内存碎片。
ZGC算法通过分页策略对内存进行管理,并利用“初始标记”阶段识别GC根节点(如线程栈变量、静态变量等),并查找这些节点引用的直接对象。此阶段采用“stop the world”(STW)策略暂停所有线程,确保标记过程的准确性。接着,通过“并发标记”阶段识别间接引用的对象,并利用多个GC线程与业务线程协作提高效率。在这一过程中,ZGC采用“三色标记”法和“remember set”机制来避免误回收正常引用的对象,确保内存管理的精准性。
接下来,ZGC通过“复制算法”实现内存回收,将正常引用的对象复制到新页面,将旧页面的数据擦除,从而实现内存的高效管理。此外,通过“初始转移”和“并发转移”阶段进一步优化内存管理过程。最后,在“对象重定位”阶段,完成引用关系的更新,确保内存管理过程的完整性和一致性。
通过实测,ZGC算法在各个阶段展现出高效的内存管理能力,尤其是标记阶段的效率,使得系统能够在保证性能的同时,有效地管理内存资源。总之,内存管理是系统性能的关键因素,Linux内核通过先进的算法和策略,实现了高效、灵活的内存管理,为现代操作系统提供稳定、可靠的服务。
linux内存回收(二)--直接内存回收机制
本文将继续深入探讨Linux内核的内存回收机制,特别关注针对zone的直接内存回收。内核通过多种方式管理内存,包括伙伴系统驱动的页面分配器。核心函数__alloc_pages_nodemask在内存分配过程中起着关键作用,它首先进行基本检查,然后初始化和配置内存分配上下文。接下来,会根据内存需求和zone列表选择合适的内存区域进行分配,若内存不足,会尝试通过get_page_from_freelist进行快速或慢速回收。
快速分配路径主要依赖get_page_from_freelist,如果失败,会尝试通过内存回收来腾出空间。当系统内存紧张,即水位低于低水位时,内存分配会进入慢速路径,涉及内存压缩和直接内存回收策略。水位管理是内存分配的基石,每个zone都有不同的水位线,如min、low和high,它们反映了内存充足度和分配优先级。
特别在Android系统中,为避免直接内存回收导致性能问题,设计者增加了额外的"extra_free_kbytes",以扩大low与min之间的缓冲空间。Linux内核4.6版本引入了watermark_scale_factor,允许动态调整内存回收阈值。总的来说,内存回收机制涉及快速与慢速分配策略,以及精细的水位管理,以确保系统的稳定运行。
了解更多详情,可以参考Linux内核源码和Android内核调整watermark的相关提交记录。本文摘自CSDN博主「奇小葩」的文章,如需引用请注明出处。
Java 垃圾回收权威指北
毫无疑问,垃圾回收(GC)已经成为现代编程语言的标配。为深入研究这一领域,我曾撰写四篇《深入浅出垃圾回收》系列文章,介绍相关理论。然而,网络上关于JDK GC原理、优化的文章质量参差不齐,其中一些理解有误的文字以讹传讹,给初学者带来困扰。即便是大厂的官方博客,也存在错误信息。基于实验与阅读openjdk源码,本文整理了一份相对可靠的资料,供参考。
了解GC算法前,需先熟悉一些常见术语:
GC算法可能同时具有并发/并行特性,或只具有其中之一。
不同JDK版本支持的选项可通过配置以下alias进行查看:
使用jflags | grep XXX的方式,可定位选项及其默认值。
如何打印GC信息?JDK提供了相关支持。
Java 8中默认集成了哪些GC实现?通过jflags即可得知。
PS系列与G1等不同收集器组合方式复杂。在Java 7u4后,UseParallelGC与UseParallelOldGC等价。通过实验测试,不同配置下年轻/老年代默认所使用的收集器。
PS系列与后续G1不在此框架内,故只能单独使用。使用UseSerialGC时,年轻代收集器为单线程的Copy。
理解mark/sweep/compact等名词对于掌握GC原理至关重要。它们简化为整理抽屉的概念,找出无用垃圾,丢弃,并整理剩余堆。然而,细节决定成败。
年轻代收集器优化策略,包括吞吐量(ParallelGC)与并发回收(CMS)。
ParallelGC适用于对延迟要求低、更看重吞吐量的应用场景。通过自适应策略调整年轻/老年代大小以满足需求。
CMS支持并发回收,尽管某些环节仍需暂停应用线程(STW)。old代在sweep后,通过freelist整理空闲地址,而非compact过程。
深入了解CMS的流程与特性,尤其是并发模式失败、最大堆碎片等问题。
解决并发模式失败(CMF)可通过提前执行CMS、禁用JVM自适应策略或使用System.gc()。CMS的并发收集过程可由选项控制。
监控old代碎片,通过配置选项查看最大块大小,若减少则表示碎片问题加剧。解决碎片问题需调整相关参数。
CMS工作流程与状态机设计模式相关,preclean阶段迭代执行特定条件,优化remark阶段并发执行。
优化GC性能时,明确关键指标,如暂停时间、垃圾回收频率等。使用工具如gcplot简化此过程。通过调整参数,如增大年轻代空间、调整OccupancyFraction等,优化CMS性能。
实战中,应用优化策略,如调整内存配置和GC参数,以提升服务性能。通过GC日志分析,发现并解决性能瓶颈。
了解参考资料以获取更多细节,深入学习GC原理。
本文旨在提供GC基础与优化策略的概览。然而,网络上关于GC的信息可能存在误解。作为读者,应保持批判性思维。希望本文提供的内容对您有所帮助。
扩展阅读:Java垃圾回收权威指北
uniapp二手手机回收租赁小程序源码/旧手机在线估价回收商城源码
这套源码集成了uniapp和thinkphp技术栈,提供了一套功能丰富的二手手机回收租赁和在线估价商城解决方案。移动端App、小程序端以及公众服务号端的整合,确保了用户在不同设备上都能获得一致的使用体验。代码全开源,这意味着开发者可以基于此源码进行二次开发,以满足特定的业务需求或添加新功能。
功能特点方面,源码支持用户在线估价旧手机,提供详细的回收价格信息,简化了交易流程。用户可以快速上传手机信息或,系统自动进行估价。对于回收服务,源码提供了便捷的预约和上门回收选项,保证了用户的便利性和安全性。同时,租赁功能使得用户可以根据需求租借手机,提供灵活多样的使用方案。
源码还具备库存管理、订单处理、用户评价、数据分析等功能,帮助运营者更好地管理业务流程,提升用户体验。此外,源码支持多语言和多货币设置,适应全球市场的需求。它还具备安全防护机制,确保交易过程中的信息安全。
此源码适用于二手手机回收、租赁及在线估价的商家,无论是初创企业还是已有业务需要扩展的公司,都能通过此源码快速搭建起专业的二手电子产品交易平台。源码的灵活性和开放性,使其不仅局限于手机,还可以应用于各种数码3C产品,如电脑、平板、相机等。
2024-12-26 15:50
2024-12-26 15:49
2024-12-26 15:37
2024-12-26 14:48
2024-12-26 14:11