1.Kafka消费者源码:重平衡(1)-初始化与FIND_COORDINATOR
2.部署Kafka监控
3.kafka源码阅读之MacBook Pro M1搭建Kafka2.7版本源码运行环境
4.Kafka Logcleaner源码分析
5.kafka源码Topic的修改创建源码分析(附视频)
Kafka消费者源码:重平衡(1)-初始化与FIND_COORDINATOR
在Kafka 2.5.2的消费者组中,重平衡是源源码依赖关键,它定义了消费者如何根据订阅关系调整对Topic分区的码修分配。当消费者数量、版本订阅的修改Topic或GroupCoordinator所在的Broker发生变更时,会触发重平衡。源源码依赖csdn 皮肤源码
消费者组状态由GroupState类管理,码修共有五个状态:Empty(无成员)、版本PreparingRebalance(加入中)、修改CompletingRebalance(等待分配)、源源码依赖Stable(已平衡)和Dead(元数据已删除)。码修状态间的版本转换基于预先定义的前置状态。例如,修改从Empty到PreparingRebalance,源源码依赖预示着重平衡的码修开始。
重平衡过程分为几个步骤,首先是消费者和Broker之间的协调。服务端启动时,GroupCoordinator组件即已就绪,而Consumer通过ConsumerCoordinator与之通信。在启动时,原生app源码消费者首先会通过FindCoordinatorRequest找到GroupCoordinator,通过最小负载节点发送请求,然后服务端确定哪个Broker负责协调,如groupId的hash值对consumer_offsets分区数取模确定。
一旦找到GroupCoordinator,消费者会发送JoinGroupRequest。后续步骤如SYNC_GROUP和HEARTBEAT确保消费者与协调器保持同步。这部分详细内容在后续的文章中会进一步探讨。
部署Kafka监控
在Kafka部署过程中,监控系统的设置至关重要。本文将简述搭建Kafka监控的实践经验,包括所选工具和环境配置步骤。
首先,确保Kafka实例在本地部署了三个实例,未使用Docker。监控方案选择了kafka_exporter、Prometheus和Grafana组合,详细选择理由可自行查阅网络资源。kafka_exporter在本地编译部署,因遇到go环境不匹配问题,jq源码ajax最终选择源码编译,通过git克隆v1.7.0版本,设置goproxy以获取依赖库。编译过程中,对`go mod vendor`指令进行了修改,成功编译出kafka_exporter可执行文件,并针对多个Kafka实例制定了启动命令。
同时,为了监控系统负载,部署了node-exporter在Docker中,确保其固定IP以方便Prometheus的配置。node-exporter的IP设为..0.2,端口为。
接下来是Prometheus的部署。首先通过Docker拉取prom/prometheus镜像,配置文件中包含了Prometheus自身、node-exporter(.网段)和kafka_exporter(..0.1)的采集项。使用命令`docker run`启动Prometheus,监听端口,与node-exporter和kafka_exporter通信。岛国网站源码
Grafana的安装则在另一个目录B中进行,设置了读写权限后通过Docker拉取grafana/grafana镜像。部署时,Grafana容器的IP设为..0.4,监听端口。登录Grafana后,首先添加DataSource,指向Prometheus实例,然后导入官网提供的Linux系统模板(如、),Kafka监控模板(如),以及Prometheus模板()以设置Dashboard。
总结,通过这些步骤,成功搭建了Kafka的监控系统,包括本地部署的kafka_exporter、Docker中的node-exporter和Prometheus,以及Grafana用于可视化监控数据。
kafka源码阅读之MacBook Pro M1搭建Kafka2.7版本源码运行环境
在探索Kafka源码的过程中,决定搭建本地环境进行实际运行,swoole源码分析以辅助理解和注释。由于日常开发中常使用Kafka 2.7版本,选择了在MacBook Pro M1笔记本上搭建此版本的源码环境。搭建过程中,记录了遇到的障碍,方便未来再次搭建时不必从头开始。 搭建Kafka 2.7源码环境需要准备以下基础环境:一、Zulu JDK1.8
在MacBook Pro M1笔记本上,基本都已安装JDK,版本不同而已。使用的是Zulu JDK1.8版本,通过下载.dmg格式的一键安装,环境自动配置,安装路径通常在 /Library/Java/JavaVirtualMachines。二、Scala 2..1
并未在系统里安装Scala,而是直接利用IDEA。按照Preferences -> Plugins -> Scala安装。选择IDEA的不同Scala JDK版本。三、安装Gradle6.6
通过官网gradle.org/releases/下载Gradle6.6版本。如国内下载速度较慢,可直接从百度网盘下载安装包。安装完成后,解压并放置在目录/Users/helloword/software/gradle-6.6,通过mac终端执行指令配置环境。四、Zookeeper3.4.6安装
直接从百度网盘下载zookeeper-3.4.6.tar.gz包,解压后放置在三台机器的/app目录下。在每个目录中创建data子目录,并建立myid文件,按照特定数字填写。在zoo.cfg文件中进行配置并复制至其他机器。五、Kafka2.7源码部署
从官网下载Kafka 2.7源码,或从百度网盘获取。解压至目录/Users/helloword/software/kafka/kafka-2.7.0-src,并通过Gradle构建环境。在mac终端执行指令,生成gradle-wrapper.jar,配置依赖。将源码导入IDEA,加载Gradle构建的项目。六、源码运行
确保源码运行打印日志,需将log4j.properties复制到core的 resources目录,并在build.gradle中添加log4配置。修改config/server.properties配置,包括zookeeper路径和broker的ip。配置server、consumer、producer三个进程,确保Kafka服务、消费者和生产者能够正常工作。 整个Kafka 2.7版本源码的本地搭建步骤完成。后续计划撰写系列文章总结阅读源码的经验。关注公众号写代码的朱季谦,获取更多分类归纳的博客。Kafka Logcleaner源码分析
Kafka日志保留策略包括按时间/大小和compact两种。Logcleaner遵循compact策略清理日志,只保留最新的消息,当多个消息具有相同key时,只保留最新的一个。
每个日志由两部分组成:clean和dirty。dirty部分可以进一步划分为cleanable和uncleanable。uncleanable部分不允许清理,包括活跃段和未达到compact延迟时间的段。
清理过程由后台线程定期执行,选择最脏的日志进行清理,脏度由dirty部分字节数与总字节数的比例决定。清理前,Logcleaner构建一个key->last_offset映射,包含dirty部分的所有消息。清理后,日志文件过滤掉过期消息,并合并较小的连续段为较大文件。
payload为null的消息被Logcleaner删除,这类消息在topic配置的时间内保留,然后被清理。清理过程需与幂等性和事务性生产者兼容,保留活跃生产者最后一批消息,直到产生新消息或生产者不活跃。只清理提交或终止事物中的消息,未提交事物中的消息不清理。
Logcleaner通过cleanOrSleep方法启动清理,选择最脏日志,调用clean清理并合并段。在清理前计算tombstone的移除时间,确保在clean部分驻留一定时间后移除。清理过程包括构建offset映射,分组段文件并清理合并。
Logcleaner的清理逻辑确保了高效和一致的日志管理,助力Kafka系统稳定运行。
kafka源码Topic的创建源码分析(附视频)
关于Kafka Topic创建的源码分析,可以从kafka-topic.sh脚本的入口开始,它执行了kafka.admin.TopicCommand类。在创建Topic时,主要涉及AdminClientTopicService对象的创建和AdminClientClient创建Topics方法的调用,其中Controller负责处理客户端的CreateTopics请求。
服务端的处理逻辑在KafkaRequestHandler.run()方法中,通过apis.handle(request)调用对应接口,如KafkaApis.handleCreateTopicsRequest,这个方法会触发adminManager.createTopics(),创建主题并监控其完成状态。创建的Topic配置和分区副本信息会被写入Zookeeper,如Topic配置和Topic的分区副本分配。
当Controller监听到/brokers/topics/Topic名称的变更后,会触发Broker在磁盘上创建相关Log文件。如果Controller在创建过程中失败,如Controller挂掉,待重新选举后,创建过程会继续,直到Log文件被创建并同步到zk中。
创建Topic时,zk上会创建特定节点,包括主题配置和分区信息。手动添加或删除/brokers/topics/节点将影响Topic的创建和管理。完整参数可通过sh bin/kafka-topic -help查看。