【android时间源码】【pw树形论坛源码】【马士兵源码】linux 设备驱动源码分析_linux设备驱动程序开发详解

时间:2024-11-15 06:19:00 分类:shield源码输出 来源:wince usb wifi 源码

1.Linux源码分析-RDMA的设设备通信连接管理CM模块与编程示例
2.Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析
3.Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器
4.linux设备驱动程序——i2c设备驱动源码实现
5.linux 5.15 ncsi源码分析
6.Linux驱动开发笔记(一):helloworld驱动源码编写、makefile编写以及驱动编译基本流程

linux 设备驱动源码分析_linux设备驱动程序开发详解

Linux源码分析-RDMA的备驱通信连接管理CM模块与编程示例

       RDMA(远程直接内存访问)是一种高性能的网络通信技术,它允许在两个系统之间直接访问对方的动源内存,从而减少数据传输中的码分网络开销。RDMA CM(通信管理器)作为关键组件,析l详解负责设置和管理可靠、驱动android时间源码连接和不可靠的程序数据报数据传输。它提供了一种传输中立的设设备接口,类似于套接字,备驱但更适合于基于队列对(QP)的动源语义,强调通信必须通过特定的码分RDMA设备进行,并且数据传输基于消息。析l详解RDMA CM能够控制RDMA API的驱动QP和通信管理部分,或者仅控制通信管理部分,程序与libibverbs库协同工作。设设备libibverbs库提供了发送和接收数据所需的底层接口。

       在编程中,RDMA CM提供了多种操作模式,包括异步和同步操作。用户可以通过在特定调用中使用rdma_cm事件通道参数来控制操作模式。如果提供了事件通道,rdma_cm标识符将报告该通道上的事件数据(如连接结果)。如果未提供通道,则所选rdma_cm标识符的所有rdma_cm操作将被阻止,直到完成。此外,RDMA CM还为不同的libibverbs提供商提供了宣传和使用特定于该提供商的各种QP配置选项的功能,称为ECE(增强连接建立)。

       为了帮助开发者更好地理解和使用RDMA CM,提供了编程参考模型,其中包括对客户端和服务器端操作的概述。客户端操作通常涉及异步操作,而服务器端操作则侧重于被动等待连接。整个流程通常包括创建事件通道、分配通信标识、绑定地址、监听、初始化QP属性、建立连接等步骤。对于同步操作,相关的事件通道操作会被省略。

       以RDMA用户态驱动中的CM服务端为例,操作流程包括创建事件通道、分配通信标识、绑定地址、pw树形论坛源码监听、初始化QP属性、建立连接等步骤。服务端还需要接收请求并处理连接接受。在内核态,还会涉及到更多调用接口,用于完成更复杂的操作。

       为了进一步了解RDMA CM的使用,推荐查阅RDMA CM用户手册和相关用户态仓库的笔记。此外,开发者可以通过访问晓兵的博客和加入DPU技术交流群来获取更多关于DPU、智能网卡、卸载、网络存储加速、安全隔离等技术的信息和资源。DPU专栏提供了更多关于DPU技术的深入讨论和最新进展。

Linux USB 驱动开发实例(一)——USB摄像头驱动实现源码分析

       Linux下的USB摄像头驱动实现源码分析,主要通过四个部分完成:设备模块的初始化与卸载、上层软件接口模块、数据传输模块以及USB CORE的支持。

       一、初始化设备模块

       模块初始化和卸载通过调用`module_init`和`module_exit`函数实现,关键数据结构为USB驱动结构,支持即插即用功能,通过`spca5xx_probe`和`spca5xx_disconnect`函数。

       二、上层软件接口模块

       基于V4L协议规范,通过`file_operations`数据结构实现设备关键系统调用,功能包括:Open打开初始化、Close关闭、Read读取数据、Mmap内存映射、Ioctl获取文件信息等。Open功能初始化解码器模块,Read功能主要将数据从内核空间传至进程用户空间。

       三、数据传输模块

       采用tasklet实现同步快速数据传递,通过软件解码模块在`spcadecode.c`上解压缩图形数据流,如yyuyv、yuvy、jpeg、jpeg至RGB格式。解码算法依赖于硬件压缩算法,最终需DSP芯片实现。马士兵源码

       四、USB CORE的支持

       使用系统实现的USB CORE层提供函数接口,如`usb_control_msg`、`usb_sndctrlpipe`等,实现对USB端点寄存器的读写操作。

       总结,本Linux USB摄像头驱动源码分析覆盖了驱动的初始化、上层接口实现、数据传输及USB CORE支持,涉及C/C++、Linux、Nginx等技术点。学习资料包括视频教程、技术路线图、文档等,通过私信获取。课程包含C/C++、Linux、Nginx等后端服务器架构开发技术,为学习者提供全面指导。

Linux驱动开发笔记(二):ubuntu系统从源码编译安装gcc7.3.0编译器

       在编译Ubuntu驱动时,由于使用的gcc版本为7.3.0,通过apt管理和下载都无法直接安装,因此需要从源码编译安装gcc7.3.0编译器。

       GCC,作为GNU项目的重要组成部分,是一款遵循GPL许可证的自由软件。起初,它为GNU操作系统设计,如今已广泛应用于Linux、BSD、MacOS X等系统,甚至在Windows上也有应用。GCC支持多种处理器架构,如x、ARM和MIPS,并且支持多种编程语言,如C、C++、Fortran、Pascal等。

       要从源码安装gcc7.3.0,首先需要下载源码包。下载地址为:mirrors.tuna.tsinghua.edu.cn...

       安装过程分为几个步骤。mfc 登录网站源码首先,确保网络连接,因为需要依赖库,如libgmp-dev、libmpfr-dev和libmpc-dev。安装完这些后,不要卸载已有的gcc,因为可能会遇到问题。

       下载并解压gcc-7.3.0.tar.gz,然后执行./configure。注意增加c和c++的配置,避免编译结果只有g++。配置完成后,进行make -j4编译,可能会遇到错误,如"fatal error: asm/errno.h: No such file or directory",这时需要修改头文件路径。

       继续编译,可能会遇到"sanitizer_syscall_generic.inc::: error: '__NR_open' was not declared in this scope",解决方法是修正头文件链接。最后,编译成功后执行sudo make install,并确认安装版本。

       在安装过程中,有两点需要注意:一是本地需要g++,否则编译时会出错,解决方法是安装gcc;二是安装后可能只有g++,没有gcc,此时需在./configure阶段添加c和c++的配置。

linux设备驱动程序——i2c设备驱动源码实现

       深入了解Linux内核中的i2c设备驱动程序详解

       在Linux内核中,i2c设备驱动程序的实现是一个关键部分。本文将逐步剖析其形成、匹配及源码实现,以帮助理解i2c总线的工作原理。

       首先,熟悉I2C的基本知识是必不可少的。作为主从结构,设备通过从机地址寻址,其工作流程涉及主器件对从机的通信。了解了基础后,我们接着来看Linux内核中的驱动程序框架。

       Linux的i2c设备驱动程序框架由driver和device两部分构成。当driver和device加载到内存时,会自动调用match函数进行匹配,android apk 源码下载成功后执行probe()函数。driver中,probe()负责创建设备节点并实现特定功能;device则设置设备的I2C地址和选择适配器,如硬件I2C控制器。

       示例代码中,i2c_bus_driver.c展示了driver部分的实现,而i2c_bus_device.ko和i2c_bus_device.ko的编译加载则验证了这一过程。加载device后,probe函数会被调用,确认设备注册成功。用户程序可测试驱动,通过读写传感器寄存器进行操作。

       在设备创建方面,i2c_new_device接口允许在设备存在时加载驱动,但有时需要检测设备插入状态。这时,i2c_new_probed_device提供了检测功能,确保只有实际存在的设备才会被加载,有效管理资源。

       深入源码分析,i2c_new_probed_device主要通过检测来实现设备存在性,最终调用i2c_new_device,但地址分配机制确保了board info中的地址与实际设备地址相符。

       至此,关于Linux内核i2c驱动的讨论结束。希望这个深入解析对您理解i2c设备驱动有帮助。如果你对此话题有兴趣,可以加入作者牧野星辰的Linux内核技术交流群,获取更多学习资源。

       学习资源

       Linux内核技术交流群:获取内核学习资料包,包括视频教程、电子书和实战项目代码

       内核资料直通车:Linux内核源码技术学习路线+视频教程代码资料

       学习直达:Linux内核源码/内存调优/文件系统/进程管理/设备驱动/网络协议栈

linux 5. ncsi源码分析

       深入剖析Linux 5. NCSI源码:构建笔记本与BMC通信桥梁

       NCSI(Network Configuration and Status Interface),在5.版本的Linux内核中,为笔记本与BMC(Baseboard Management Controller)以及服务器操作系统之间的同网段通信提供了强大支持。让我们一起探索关键的NCSI网口初始化流程,以及其中的关键结构体和函数。

       1. NCSI网口初始化:驱动注册

       驱动程序初始化始于ftgmac_probe,这是关键步骤,它会加载并初始化struct ncsi_dev_priv,包含了驱动的核心信息,如NCSI_DEV_PROBED表示最终的拓扑结构,NCSI_DEV_HWA则启用硬件仲裁机制。

       关键结构体剖析

struct ncsi_dev_priv包含如下重要字段:

       request表,记录NCSI命令的执行状态;

       active_package,存储活跃的package信息;

       NCSI_DEV_PROBED,表示连接状态的最终拓扑;

       NCSI_DEV_HWA,启用硬件资源的仲裁功能。

       命令与响应的承载者

       struct ncsi_request是NCSI命令和结果的核心容器,包含请求ID、待处理请求数、channel队列以及package白名单等。每个请求都包含一个唯一的ID,用于跟踪和管理。

       数据包管理与通道控制

       从struct ncsi_package到struct ncsi_channel,每个通道都有其特定状态和过滤器设置。multi_channel标志允许多通道通信,channel_num则记录总通道数量。例如,struct ncsi_channel_mode用于设置通道的工作模式,如NCSI_MODE_LINK表示连接状态。

       发送与接收操作

       struct ncsi_cmd_arg是发送NCSI命令的关键结构,包括驱动私有信息、命令类型、ID等。在ncsi_request中,每个请求记录了请求ID、使用状态、标志,以及与网络链接相关的详细信息。

       ncsi_dev_work函数:工作队列注册与状态处理

       在行的ncsi_register_dev函数中,初始化ncsi工作队列,根据网卡状态执行通道初始化、暂停或配置。ncsi_rcv_rsp处理NCSI报文,包括网线事件和命令响应,确保通信的稳定和高效。

       扩展阅读与资源

       深入理解NCSI功能和驱动probe过程,可以参考以下文章和资源:

       Linux内核ncsi驱动源码分析(一)

       Linux内核ncsi驱动源码分析(二)

       华为Linux下NCSI功能切换指南

       NCSI概述与性能笔记

       浅谈NCSI在Linux的实现和应用

       驱动probe执行过程详解

       更多技术讨论:OpenBMC邮件列表和CSDN博客

       通过以上分析,NCSI源码揭示了如何构建笔记本与BMC的高效通信网络,为开发者提供了深入理解Linux内核NCSI模块的关键信息。继续探索这些资源,你将能更好地运用NCSI技术来优化你的系统架构。

Linux驱动开发笔记(一):helloworld驱动源码编写、makefile编写以及驱动编译基本流程

       前言

       基于linux的驱动开发学习笔记,本篇主要介绍了一个字符驱动的基础开发流程,适合有嵌入式开发经验的读者学习驱动开发。

       笔者自身情况

       我具备硬件基础、单片机软硬基础和linux系统基础等,但缺乏linux驱动框架基础,也未进行过linux系统移植和驱动移植开发。因此,学习linux系统移植和驱动开发将有助于打通嵌入式整套流程。虽然作为技术leader不一定要亲自动手,但对产品构架中的每一块业务和技术要有基本了解。

       推荐

       建议参考xun为的视频教程,教程过程清晰,适合拥有丰富知识基础的资深研发人员学习。该教程不陷入固有思维误区,也不需要理解imx6的庞杂汇报,直接以实现目标为目的,无需从裸机开始开发学习,所有步骤都解释得清清楚楚。结合多年相关从业经验,确实能够融会贯通。从业多年,首次推荐,因为确实非常好。

       驱动

       驱动分为四个部分

       第一个驱动源码:Hello world!

       步骤一:包含头文件

       包含宏定义的头文件init.h,包括初始化和宏头文件,如module_init、module_exit等。

       #include

       包含初始化加载模块的头文件

       步骤二:写驱动文件的入口和出口

       使用module_init()和module_exit()宏定义入口和出口。

       module_init(); module_exit();

       步骤三:声明开源信息

       告诉内核,本模块驱动有开源许可证。

       MODULE_LICENSE("GPL");

       步骤四:实现基础功能

       入口函数

       static int hello_init(void) { printk("Hello, I’m hongPangZi\n"); return 0; }

       出口函数

       static void hello_exit(void) { printk("bye-bye!!!\n"); }

       此时可以修改步骤二的入口出口宏

       module_init(hello_init); module_exit(hello_exit);

       总结,按照四步法,搭建了基础的驱动代码框架。

       Linux驱动编译成模块

       将驱动编译成模块,然后加载到内核中。将驱动直接编译到内核中,运行内核则会直接加载驱动。

       步骤一:编写makefile

       1 生成中间文件的名称

       obj-m += helloworld.o

       2 内核的路径

       内核在哪,实际路径在哪

       KDIR:=

       3 当前路径

       PWD?=$(shell pwd)

       4 总的编译命令

       all: make -C $(KDIR) M=$(PWD) modules

       make进入KDIR路径,当前路径编译成模块。

       obj-m = helloworld.o KDIR:= PWD?=$(shell pwd) all: make -C $(KDIR) M=$(PWD) modules

       步骤二:编译驱动

       编译驱动之前需要注意以下几点:

       1 内核源码要编译通过

       驱动编译成的目标系统需要与内核源码对应,且内核源码需要编译通过。

       2 内核源码版本

       开发板或系统运行的内核版本需要与编译内核驱动的内核源码版本一致。

       3 编译目标环境

       在内核目录下,确认是否为需要的构架:

       make menu configure export ARCH=arm

       修改构架后,使用menu configure查看标题栏的内核构架。

       4 编译器版本

       找到使用的arm编译器(实际为arm-linux-gnueabihf-gcc,取gcc前缀):

       export CROSS_COMPILE=arm-linux-gnueabihf-

       5 编译

       直接输入make,编译驱动,会生成hellowold.ko文件,ko文件就是编译好的驱动模块。

       步骤三:加载卸载驱动

       1 加载驱动

       将驱动拷贝到开发板或目标系统,然后使用加载指令:

       insmod helloworld.ko

       会打印入口加载的printk输出。

       2 查看当前加载的驱动

       lsmod

       可以查看到加载的驱动模块。

       3 卸载驱动

       rmmod helloworld

       可以移除指定驱动模块(PS:卸载驱动不需要.ko后缀),卸载成功会打印之前的printk输出。

       总结

       学习了驱动的基础框架,为了方便测试,下一篇将使用ubuntu.编译驱动,并做好本篇文章的相关实战测试。

Linux驱动开发 - Linux 设备树学习 - DTS语法

       设备树(Device Tree)是一种描述硬件设备的树形结构文件,主要用于Linux系统中描述板级设备信息,如CPU数量、内存基地址、IIC接口和SPI接口所连接的设备等。设备树的主干是系统总线,IIC控制器、GPIO控制器、SPI控制器等设备是系统总线上的分支。例如,IIC控制器分为IIC1和IIC2,其中IIC1连接了FT和ATC这两个IIC设备,IIC2仅连接了MPU一个设备。

       在开发Linux设备驱动时,需要了解DTS(Device Tree Source)、DTB(Device Tree Binary)和DTC(Device Tree Compiler)之间的关系。DTC工具依赖于特定的源代码文件,最终生成主机文件DTC。要编译DTS文件,只需在Linux源码根目录下执行命令“make all”或“make dtbs”,后者仅编译设备树。

       在开发板中,每个板子都对应一个DTS文件,以I.MX6ULL芯片为例,打开arch/arm/boot/dts/Makefile文件,可以找到特定编译配置。当选中I.MX6ULL芯片后,与该芯片相关的DTS文件会被编译成DTB文件。若要为新的板子编写DTS文件,只需新建此板子对应的DTS文件,并在dtb-$(CONFIG_SOC_IMX6ULL)下添加对应的DTB文件名,这样在编译设备树时会自动编译为二进制文件。

       在Linux内核源码分析学习方面,可参考指定地址。此外,Linux内核源码分析交流群提供学习资源,包括书籍、视频等,通过加入该群可以获取这些资源。

       在编写设备树文件时,需要了解DTS语法。DTS文件支持头文件,扩展名为.dtsi。设备树节点通过属性信息描述,属性是键值对形式。例如,在imx6ull.dtsi文件中,描述了CPU架构、频率、外设寄存器地址范围等信息。设备节点是树形结构中描述设备的节点,通过节点名字和地址来描述。

       兼容性属性(compatible)是设备树中非常重要的属性,用于将设备与驱动绑定。属性值是一个字符串列表,格式为“厂商名称, 设备名称”。Linux下的外设驱动通常会使用这些兼容性属性来查找与设备匹配的驱动程序。

       模型属性(model)描述设备模块信息,如设备名字。状态属性(status)记录设备状态,可选状态包括正在运行、已停止、错误等。地址属性(address-cells和size-cells)用于描述设备子节点的地址信息,reg属性用于描述设备地址空间资源信息。ranges属性用于描述设备子地址和父地址的映射关系。

       在产品开发过程中,设备树文件需要随着硬件需求的变更而更新。例如,需要在I.MX6U-ALPHA开发板的I2C1接口上添加一个新设备时,需要在对应的DTS文件中向已有节点添加新子节点。

       在Linux内核启动时,设备树信息会被解析并在根文件系统中以目录/proc/devicetree的形式体现。通过该目录可以查看根节点的属性和子节点,如模型、兼容性、地址等信息。这些信息与设备树文件中的描述相匹配。

七种Linux设备驱动模型之——Kset

       深入理解

       Linux设备驱动模型中的Kset,是一种用于管理同一类kobject集合的关键组件。Kset就像一个内核对象的容器,便于对属于同一类别的对象进行高效管理,如/sys/bus下的kobject。

       Kset的数据结构由struct kset结构体构建,它包含一个链表list,用于存储kobjects,并通过spinlock list_lock进行互斥保护。作为kobject的子类,kset本身也包含一个kobject。当kobject状态变化需要通知用户空间时,Kset使用uevent_ops集合中的函数来处理uevent事件。

       以/sys/module节点创建为例,首先通过kset_create_and_add创建名为"module"的kset,实际效果是sys目录下会生成一个module子目录。模块参数通过kernel_add_sysfs_param添加到sys中,这个过程与module_param函数和模块的__start___param和__stop___param定义紧密相关。当用户通过insmod加载模块时,init_module系统调用会被触发,最终在/sys/module下的每个模块都会有一个"parameters"目录,存储模块参数。

       要深入了解Kset的详细操作和uevent机制,可以参考后续关于uevent的文章。对于Linux内核技术学习者,有兴趣的朋友可以加入技术交流群,获取更多学习资源,如视频教程、电子书和实践项目代码。内核源码技术全面学习路径、内存调优、文件系统、进程管理、设备驱动和网络协议栈等内容,一网打尽。