1.������Դ��
2.vue反编译dist包到源码
3.BatchNorm理解(含Pytorch部分源码)
4.python实现代码雨附源码
5.Python代码爬取抖音无水印视频并下载-附源代码
6.UE记录GAS中AttributeSet初始化流程
������Դ��
在互联网上,附部分源我注意到一个有趣的码完码开源项目——快手团队的DouZero,它将AI技术应用到了斗地主游戏中。整源今天,附部分源我们将通过学习如何使用这个原理,码完码来制作一个能辅助出牌的整源易语言电视直播源码欢乐斗地主AI工具,也许它能帮助我们提升游戏策略,附部分源迈向财富自由的码完码境界。 首先,整源让我们看看AI出牌器的附部分源实际运作效果: 接下来,我们逐步构建这个AI出牌器的码完码制作过程:核心功能与实现步骤
UI设计:首先,我们需要设计一个简洁的整源用户界面,使用Python的附部分源pyqt5库,如下是码完码关键代码:
识别数据:在屏幕上抓取特定区域,通过模板匹配识别AI的整源手牌、底牌和对手出牌,这部分依赖于截图分析,核心代码如下:
地主确认:通过截图确定地主身份,代码负责处理这一环节:
AI出牌决策:利用DouZero的AI模型,对每一轮出牌进行判断和决策,这部分涉及到代码集成,例如:
有了这些功能,出牌器的基本流程就完成了。接下来是使用方法:使用与配置
环境安装:你需要安装相关库,并配置好运行环境,wifi android项目源码具体步骤如下:
位置调整:确保游戏窗口设置正确,AI出牌器窗口不遮挡关键信息:
运行测试:完成环境配置后,即可启动程序,与AI一起战斗:
最后,实际操作时,打开斗地主游戏,让AI在合适的时间介入,体验AI带来的智慧策略,看看它是否能帮助你赢得胜利!vue反编译dist包到源码
在处理老项目源码缺失问题时,可以通过反编译dist包获取部分源码。以下是具体步骤:
当面临源码缺失的挑战时,可以通过反编译dist包来补全代码。首先,需要在管理员权限下启动命令行工具(cmd)。 在dist包的static/js目录下,找到如0.7ab7dffccc1ca.js.map这样的编译映射文件。以这个文件为例,执行反编译操作,可以全局安装reverse-sourcemap插件,然后执行命令:reverse-sourcemap --output-dir source 0.7ab7dffccc1ca.js.map 为了自动化这个过程,可以编写脚本利用Node.js的child_process模块。通过fs模块遍历文件夹,找出所有.map文件,婚车网站源码将其存入数组,然后使用递归调用reverse-sourcemap命令。以下是关键步骤的脚本编写方法:创建一个函数,用于执行反编译命令(reverse-sourcemap)。
使用fs模块读取文件并使用正则表达式匹配.map文件。
遍历匹配到的.map文件,并调用执行函数。
通过这些步骤,你将能够从dist包反编译出部分源码,尽管可能只限于Vue文件,但这已能满足基本需求。最终,你会看到source目录下反编译得到的源码文件。BatchNorm理解(含Pytorch部分源码)
深度学习中,数据归一化是关键。神经网络学习数据分布以在测试集上达到泛化效果。然而,若每个batch输入数据分布不同,即Covariate Shift,这会带来训练挑战。数据经过多层网络后,分布发生改变,形成Internal Covariate Shift,这进一步增加了下层网络学习的从源码安装apk难度。为解决中间层Internal Covariate Shift问题,引入了Batch Normalization(BN)操作。
BN算法流程如下:
(1)计算输入批量数据的均值。
(2)计算输入批量数据的方差。
(3)对每个数据进行归一化。
(4)引入缩放变量和平移变量,通过训练更新,计算归一化后的值。
BN中均值方差计算基于张量数据,通常维度为[N, H, W, C]。其中N为batch_size,H和W为特征图尺寸,C为通道数。均值计算是每个通道内数字总和除以[N, H, W]。例如,对于[2,2,2,3]输入,代表2个batch,每个batch有3个特征图(通道数为3),每个特征图大小为2*2。以通道1为例,计算步骤如下:
均值计算公式为:均值=(所有数字总和)/ [N, H, W]。
最终获得三个通道的均值和方差,网络更新参数,为每一个channel对应一个缩放变量和平移变量。拆分盘源码开发
在Pytorch中,BN通过_NormBase类和_BatchNorm类实现。_NormBase类定义BN相关的属性,_BatchNorm类继承自_NormBase,是BatchNorm2d实际调用的类。具体源码包括定义属性、计算均值和方差、归一化以及参数更新等关键步骤。
python实现代码雨附源码
代码首先导入了requests、lxml和csv模块。
如遇模块问题,请在控制台输入以下建议使用国内镜像源。
以下几种国内镜像源可供选择:
代码包含以下部分:
导入所需的模块。
定义窗口的宽度、高度和字体大小。
初始化pygame模块并创建窗口。
定义字体类型和大小,字体名称建议替换为你的字体文件路径或名称。
创建背景表面并填充半透明黑色背景。
设置窗口背景颜色为黑色。
定义字母列表。
创建字母表面。
计算可以容纳的列数。
定义存储每列字母下落距离的列表。
主循环处理事件和绘制字母,包括窗口关闭事件、按键事件、下落速度控制、背景绘制、字母绘制和更新下落距离,实现连续下落效果。
获取完整代码。
Python代码爬取抖音无水印视频并下载-附源代码
使用Python爬取并下载抖音无水印视频的具体步骤如下: 首先,请求重定向的地址。通过复制抖音视频分享链接中的v.douyin.com/部分,需要使用request请求该链接。由于链接会进行重定向,因此在请求时应添加allow_redirects=False参数。返回值将包含一系列参数,其中包含该视频的网页地址。为了获取无水印视频的链接,需将网页地址中的特定数字拼接到抖音官方的json接口上。 接下来,请求json链接。根据前面获取的视频json数据链接,可以通过浏览器查看内容以获取相关值。使用request请求该链接,进一步分析json内容以获取所需信息。 步骤三涉及链接的拼接。所有视频的地址差异仅在于video_id,因此主要任务是获取json返回数据中的video_id。将该值与aweme.snssdk.com/aweme/...拼接在一起,即可得到抖音无水印视频的地址。访问此链接时,系统会自动重定向到视频的实际地址,从而方便下载无水印视频。 为了实现这一过程,以下是完整的源代码示例: 抖音无水印视频解析接口:https://hmily.vip/api/dy/?url= 使用方法:在接口地址后添加要下载的抖音视频链接。返回的将是json数据,包含下载链接。 以上方法旨在提供学习资源和帮助,仅供个人或非商业用途。在使用过程中请确保遵守相关法律法规,尊重版权和用户隐私。UE记录GAS中AttributeSet初始化流程
本文旨在清晰阐述AttributeSet初始化流程,并附带部分源码解析。若需跟随操作,请确保准备了自定义的AttributeSet、ASC以及挂载位置,如Actor、武器或角色等,才能执行初始化。
FAttributeMetaData初始化流程:
创建DataTable,RowStruct设定为AttributeMetaData。添加行,RowName设为[AttributeSet].[Attribute],并保存DataTable。注意,尽管官方及注释使用UAttributeSet,但此处的AttributeSet指属性集名称,而非类名。Attribute为属性集中的属性,如Health。
在Character蓝图中,选中ASC,在细节面板的Attribute Test栏下,配置Attributes为对应的Class,Default String Table为创建的DataTable。
至此配置完成,运行游戏,即可查看效果。
读源码流程:
初始化DataTable逻辑位于ASC的OnRegister函数中,该函数直接调用InitFromMetaDataTable函数。InitFromMetaDataTable函数通过迭代AttributeSet下的所有属性,处理数值或FGameplayAttributeData类型。
最终,创建的AttributeSet被缓存至SpawnedAttributes的TArray中。实际缓存的是引用而非对象。
评价:
一般,无法配置属性的Level。可通过创建不同初始的AttributeSet来解决,但较为繁琐。使用AttributeSetInitter可简化此过程。
AttributeSetInitter初始化流程:
创建UCurveTable,选择Linear插值类型。配置[GroupName].[AttributeSet].[Attribute],并保存。Group为自定义组名,AttributeSet为属性集名称,Attribute为属性名。
创建并打开UCurveTable,根据配置添加数据。回到代码中,添加初始化UCurveTable的代码。
配置完成后,运行游戏,即可查看效果。
深入源码解析:
在ASC初始化时,OnRegister函数调用FGameplayAbilitiesModule并获取AbilitySystemGlobals。通过接口,获取GlobalAttributeSetDefaultsTableNames内的SoftPath,并加载对应的CurveTable。
加载完成后,CurveTable被缓存,执行ReloadAttributeDefaults函数。在该函数中,通过SoftPath加载CurveTable,缓存后执行InitAttributeDefaults函数。
InitAttributeDefaults函数执行AllocAttributeSetInitter,并通过PreloadAttributeSetData加载CurveTable。PreloadAttributeSetData函数分割配置字符串,查找对应数据集和属性,存储于FAttributeSetInitterDiscreteLevels。
总结:
AttributeSet初始化流程包括自定义DataTable配置、ASC配置与源码解析。AttributeSetInitter提供简化配置方式,而通过GameplayEffect初始化则提供动态属性修改。整体流程清晰,但需注意配置管理与效率问题。
评价:流程有效,但配置管理需优化,考虑集中化配置与简化流程。
峰源码工被开了吗_源码时代和千峰教育哪家好
爱情记录网站源码_爱情记录网站源码大全
仿饭否网源码
散户线指标源码_散户线指标源码是什么
微信强制分享的源码
麒麟源码 整站资源_麒麟软件源