一文详解RocketMQ-Spring的源码解析与实战
RocketMQ-Spring源码解析与实战概览
这篇文章详细阐述了在Spring Boot项目中如何运用rocketmq-spring SDK进行消息收发,以及开发者视角下SDK的源总生设计逻辑。通过一步步操作流程,码汇理解其在生产者和消费者端的源码实际应用。SDK简介
rocketmq-spring本质上是汇总一个Spring Boot启动器,通过“约定优于配置”的生产天堂网源码2019理念简化集成过程。只需在pom.xml中引入依赖,源总生并在配置文件中进行简单的码汇配置,如添加名字服务地址和生产者组。源码配置与操作流程
1. 在pom.xml引入依赖并配置,汇总如生产者和消费者配置。生产生产者配置:包含名字服务地址和生产者组
消费者配置:实现消息监听器
核心源码分析
rocketmq-spring的源总生核心模块包括启动器、SDK模块和示例代码模块,码汇源码中着重解析了RocketMQTemplate类和消费者启动机制,源码如生产者模板封装和消费者消息处理逻辑。汇总生产者模板与消费者启动
生产者:通过RocketMQProperties对象绑定配置,创建生产者Bean并整合到RocketMQTemplate中
消费者:通过ListenerContainerConfiguration自动启动,封装RocketMQListener的消费逻辑
进阶学习
要深入学习rocketmq-spring,可以从实际操作、模块设计、starter设计思路和源码理解四个方面逐步提升。Handler知识详解与源码分析
Handler是java中spilt源码分析Android中的核心组件,它负责在不同线程间传递消息。其工作原理是通过内存共享,允许子线程(生产者)向主线程(消费者)发送消息,以及主线程向子线程发送指令。这种机制有助于线程间协作,如网络请求完成后更新UI等场景。
Message是消息的实体,承载着数据和执行指令。MessageQueue是一个优先级队列,负责存储和调度消息。Handler则是个消息处理类,负责发送、获取和处理消息,以及管理消息队列。Looper的存在是为了从MessageQueue中轮询消息,执行相应操作。
创建Handler有多种方式,包括主线程的匿名内部类和静态内部类,以及子线程中的Looper.prepare()和Looper.loop()。发送消息的方法丰富多样,如sendMessage()、mdl文件有源码吗sendMessageDelayed()等,可以控制消息的执行时间和顺序。处理消息时,Handler与MessageQueue、Looper的交互是关键,保证了消息处理的线程安全。
在源码分析中,我们发现Looper的创建和使用与APP启动流程紧密相关,确保每个线程只有一个Looper,避免内存泄漏。MessageQueue的线程同步和消息屏障机制确保了消息的有序处理。此外,如何处理内存管理、线程同步问题以及Looper的退出策略也是处理Handler时需要注意的要点。
最后,对于Handler的使用,如创建、消息发送和处理,以及可能遇到的问题,如内存泄漏、线程同步等,饼状图源码下载都有详细的解析和解决方案。理解这些概念有助于开发人员更有效地利用Handler进行线程间的通信。
RocketMQ源码分析:Broker概述+同步消息发送原理与高可用设计及思考
Broker在RocketMQ架构中扮演关键角色,主要负责存储消息,其核心任务在于持久化消息。消息通过生产者发送给Broker,而消费者则从Broker获取消息。Broker的物理部署架构图清晰展示了这一过程。
从配置文件角度,我们深入探讨Broker的存储设计,重点关注以下几个方面:消息发送、消息协议、消息存储与检索、消费队列维护、消息消费与重试机制。深入分析Broker内部实现,包括消息发送过程、获取topic路由信息、选择消息队列以及发送消息至特定Broker。
消息发送过程包括参数解析、发送方式选择、箱体通道指标源码回调函数配置以及超时时间设定。同步消息发送流程主要分为获取路由信息、选择消息队列、发送消息、更新失败策略与处理同步调用方式。获取路由信息过程包括从本地缓存尝试获取、从NameServer获取配置信息更新缓存,以及针对特定或默认topic的路由信息查询。
选择消息队列时考虑Broker负载均衡,通过轮询机制获取下一个可用消息队列。选择队列逻辑涉及发送失败延迟规避机制,确保选择的Broker正常,并根据Broker状态进行排序后选择一个队列。消息发送至指定Broker,使用长连接发送并存储消息,同步消息发送包含重试机制,异步消息发送则在回调中处理重试。
思考题:分析消息发送异常处理,包括NameServer宕机与Broker挂机情况。NameServer宕机时,生产者可利用本地缓存继续发送消息,而Broker挂机会导致消息发送失败,但通过故障延迟机制可确保高可用性设计。理解这些机制与流程,有助于深入掌握RocketMQ的同步消息发送原理与高可用设计。
浅析源码 golang kafka sarama包(一)如何生产消息以及通过docker部署kafka集群with kraft
本文将深入探讨Golang中使用sarama包进行Kafka消息生产的过程,以及如何通过Docker部署Kafka集群采用Kraft模式。首先,我们关注数据的生产部分。
在部署Kafka集群时,我们将选择Kraft而非Zookeeper,通过docker-compose实现。集群中,理解LISTENERS的含义至关重要,主要有几个类型:
Sarama在每个topic和partition下,会为数据传输创建独立的goroutine。生产者操作的起点是创建简单生产者的方法,接着维护局部处理器并根据topic创建topicProducer。
在newBrokerProducer中,run()方法和bridge的匿名函数是关键。它们反映了goroutine间的巧妙桥接,通过channel在不同线程间传递信息,体现了goroutine使用的精髓。
真正发送消息的过程发生在AsyncProduce方法中,这是数据在三层协程中传输的环节,虽然深度适中,但需要仔细理解。
sarama的架构清晰,但数据传输的核心操作隐藏在第三层goroutine中。输出变量的使用也有讲究:当output = p.bridge,它作为连接内外协程的桥梁;output = nil则关闭channel,output = bridge时允许写入。
Java并发编程笔记之LinkedBlockingQueue源码探究
LinkedBlockingQueue 是基于单向链表实现的一种阻塞队列,其内部包含两个节点用于存放队列的首尾,并维护了一个表示元素个数的原子变量 count。同时,它利用了两个 ReentrantLock 实例(takeLock 和 putLock)来保证元素的原子性入队与出队操作。此外,notEmpty 和 notFull 两个信号量与条件队列用于实现阻塞操作,使得生产者和消费者模型得以实现。
LinkedBlockingQueue 的实现主要依赖于其内部锁机制和信号量管理。构造函数默认容量为最大整数值,用户可自定义容量大小。offer 方法用于尝试将元素添加至队列尾部,若队列未满则成功,返回 true,反之返回 false。若元素为 null,则抛出 NullPointerException。put 方法尝试将元素添加至队列尾部,并阻塞当前线程直至队列有空位,若被中断则抛出 InterruptedException。通过使用 putLock 锁,确保了元素的原子性添加以及元素计数的原子性更新。
在实现细节上,offer 方法通过在获取 putLock 的同时检查队列是否已满,避免了不必要的元素添加。若队列未满,则执行入队操作并更新计数器,同时考虑唤醒等待队列未满的线程。此过程中,通过 notFull 信号量与条件队列协调线程间等待与唤醒。
put 方法则在获取 putLock 后立即检查队列是否满,若满则阻塞当前线程至 notFull 信号量被唤醒。在入队后,更新计数器,并考虑唤醒等待队列未满的线程,同样通过 notFull 信号量实现。
poll 方法用于从队列头部获取并移除元素,若队列为空则返回 null。此方法通过获取 takeLock 锁,保证了在检查队列是否为空和执行出队操作之间的原子性。在出队后,计数器递减,并考虑激活因调用 poll 或 take 方法而被阻塞的线程。
peek 方法类似,但不移除队列头部元素,返回 null 若队列为空。此方法也通过获取 takeLock 锁来保证操作的原子性。
take 方法用于阻塞获取队列头部元素并移除,若队列为空则阻塞当前线程直至队列不为空。此方法与 put 方法类似,通过 notEmpty 信号量与条件队列协调线程间的等待与唤醒。
remove 方法用于移除并返回指定元素,若存在则返回 true,否则返回 false。此方法通过双重加锁机制(fullyLock 和 fullyUnlock)来确保元素移除操作的原子性。
size 方法用于返回当前队列中的元素数量,通过 count.get() 直接获取,确保了操作的准确性。
综上所述,LinkedBlockingQueue 通过其独特的锁机制和信号量管理,实现了高效、线程安全的阻塞队列操作,适用于生产者-消费者模型等场景。
2024-11-14 10:34
2024-11-14 10:04
2024-11-14 09:35
2024-11-14 08:31
2024-11-14 08:12