【分时伏击涨停源码指标】【如何修改盘面指标源码】【小游戏跳广告源码】微软源码分析

时间:2025-01-13 20:46:20 来源:抄底王翻倍指标源码 编辑:旅游网源码

1.在微软开源后,微软请问大家如何深入的学习C ? - 知乎
2.LM训练05 ZeRO系列
3.源码阅读忆丛(37)Minigui
4.微软的 Windows 助手——UFO,原理剖析
5.巨硬Application Inspector初体验On Mac

微软源码分析

在微软开源后,源码请问大家如何深入的学习C ? - 知乎

       阅读微软开源的C代码,实际上已经公开了三年有余。分析如果你感到无法找到相关资源,微软使用百度等搜索引擎通常可以解决问题。源码许多人已经提到了微软的分析分时伏击涨停源码指标Reference Source网站,然而你似乎仍然在寻找如何将代码集成到Visual Studio中查看的微软方法。实际上,源码这信息在网站上已经明确标注。分析

       对于阅读源代码的微软初学者来说,可能存在理解上的源码困难,如果只是分析简单浏览或集成代码查看,可以按照指示操作。微软如果你认为需要查找特定类的源码源代码时,搜索格式应为“C# 类名 source code”,分析这通常会直接导向所需的页面。若你希望直接在Visual Studio中查看源代码,搜索“view .net source code in visual studio”将提供解决方案。

       对于直接浏览源代码的需求,通过搜索“view .net source code”可以访问到Reference Source站点。如果你需要下载整个源代码包,搜索“.net source code download”将引导你至Reference Source站点,提供源代码下载选项。这些步骤和资源都清晰地显示在网站上,因此问题可能在于个人搜索技巧或对信息的利用。

       综合来看,提供的问题解决方案似乎较为直接,关键在于正确使用搜索引擎和理解所提供的如何修改盘面指标源码资源。如果你仍然感到困惑或无法找到所需信息,可能需要重新审视搜索策略或寻求更具体的指导,以便更好地利用提供的资源。

LM训练 ZeRO系列

       分布式训练的几个主题包括:

       LLM训练 分布式通信,LLM训练 显存占用分析,LLM训练 高效训练方法,LLM训练 数据并行,LLM训练 ZeRO系列,LLM训练 流水线并行,LLM训练 张量并行,LLM训练 Megatron-LM 源码分析。

       微软发布了四篇论文:

       ZeRO: Memory optimizations Toward Training Trillion Parameter Models (/) - 提出了ZeRO-DP和 ZeRO-R

       ZeRO-Offload: Democratizing Billion-Scale Model Training (/) - 微软

       ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning (/) - 微软

       ZeRO++: Extremely Efficient Collective Communication for Giant Model Training (/) - 微软

       ZeRO1.1 概览

       ZeRO包含两组优化:

       (1)ZeRO-DP:减少模型状态PGO的显存占用

       (2)ZeRO-R:减少剩余显存的消耗。

       1.2 ZeRO-DP

       目标是优化数据并行,减少显存冗余,最小化通信量。

       原理是使用动态通信策略来分区优化器状态、梯度和参数。

       实现是对模型参数进行分区,梯度也相应分区,优化器只优化本分区的参数。

       两个原则:类型:

       1.2.1 ZeRO-Stage 1

       原理是对优化器状态进行分区,每个rank更新相应参数后,收集构成完整模型。

       流程:通信分析:单个GPU总通信量为2*ψ。

       1.2.2 ZeRO-Stage 2

       在Stage1基础上,对梯度进行分区。

       ZeRO-2分割Optimizer States与Gradients。小游戏跳广告源码

       用完即删原则:每个rank只对自己负责的参数Pi的梯度进行规约。

       通信分析:同ZeRO-Stage1,单个GPU总通信量为2*ψ。

       1.2.3 ZeRO-Stage 3

       在Stage1/Stage2基础上,对模型参数进行分区。

       ZeRO-3分割Optimizer States、Gradients和Parameters。

       需要用时去取原则:计算特定layer时,对参数进行all-gather。

       通信分析:单个GPU总通信量为3*ψ。

       1.2.4 动画视频

       The video below shows how ZeRO (with all three stages) performs a training step including forward pass, backward pass, and parameter update.

       1.2.5 实验效果

       实验配置:G 8*A、全参训练,bs=1,checkpointing=True。

       实验全参训练,最多只能跑B模型,B模型跑不起来。

       1.2.6 ZeRO-DP VS DDP

       1.3 ZeRO-R

       1.3.1 中间激活值

       认为checkpoint方法虽然有用,但在大型LLM中激活值仍然占用大量显存。

       eg:B的LLM,bs=,激活值显存占用GB。

       方法:Offload到CPU中。

       1.3.2 临时缓存区

       在梯度reduce操作中,用于存储中间结果的临时缓冲区会消耗大量显存。

       方法:申请固定大小的缓存区 constant size buffers 。

       1.3.3 内存碎片

       原因:内存碎片是开封本地小程序源码tensor生命周期错配的结果。

       问题:即使有足够的显存,可能会因为缺少连续内存而使得内存分配失败。

       方法:ZeRO为激活检查点和梯度预先分配连续内存块,并在初始化时将它们复制到预先分配的连续内存中。

       2、ZeRO-Offload

       利用CPU内存来解决GPU显存不足的问题。

       CPU:参数更新在CPU完成。

       GPU:前向和后向的计算在GPU上完成。

       3、ZeRO-Infinity

       利用外接存储设备来解决GPU显存不足的问题。

       4、ZeRO++

       to do...

       5、Deepspeed ZeRO源码

       5.1 入口

       5.1.1 总入口initialize()

       源码地址:deepspeed.__init__

       简介:选择不同的engin引擎。

       5.1.2 ZeRO引擎DeepSpeedEngine

       源码地址:deepspeed.runtime.engine

       整体流程及关键方法如下所示:

       (1)DeepSpeedEngine.init

       核心内容:最重要的就是对优化器(Optimizer)的初始化。

       ZeRO 的核心特性的实现都在优化器(Optimizer)中,核心方法_configure_zero_optimizer() 。

       stage1/2 优化器:DeepSpeedZeroOptimizer

       stage3 优化器:DeepSpeedZeRoOffload

       (2)DeepSpeedEngine.forward

       核心内容:在模型model进行前向传播,返回loss,ZeRO不需要进行特殊处理

       (3)DeepSpeedEngine.backward

       核心内容:获得各个rank上对应分片参数Pi的梯度Gi。

       self.optimizer.backward()

       Zero stage1:self.optimizer.reduce_gradients()

       Zero stage2:self.overlapping_partition_gradients_reduce_epilogue

       (4)DeepSpeedEngine.step

       核心内容:基于梯度Gi更新对应的分片参数Pi,各rank收集最新的、完整的模型参数P

       self.optimizer.step()

       self.optimizer.zero_grad()

       5.2 DeepSpeedZeroOptimizer

       源码地址:deepspeed.runtime.zero.stage_1_and_2

       简介:stage1/2 优化器,对参数的Optimizer States与Gradients进行分割。

       5.2.1 init

       核心思路:ZeRO初始化时候会对参数进行均匀切分给各个rank。通过参数分区,进而实现梯度、优化器的thinkphp论坛带门户源码分区。

       除此之外,注册梯度钩子函数reduce_partition_and_remove_grads(当梯度计算完成时自动调用该函数)

       5.2.2 forward

       在模型model进行前向传播,返回loss,ZeRO不需要进行特殊处理。

       5.2.3 backward

       5.2.4 reduce_ipg_grads()

       ipg:Independent Parallel Gradient

       简介:对连续的ipg梯度进行reduce。

源码阅读忆丛()Minigui

       探索GUI的历史与实现

       对于GUI的细节仍然存在一些困惑,似乎总是有新的东西需要学习。年轻时,对《Windows程序设计》、MFC等书籍充满热情,那些API的神奇之处让人着迷。然而,花费大量时间深入学习,却似乎事倍功半,微软似乎更倾向于教人如何使用,而非深入解释实现原理。尽管如此,还是尝试实现过文字版的GUI,涉及基本的按钮、滚动条、菜单等元素。但一些细节仍不清楚。

       通过网络搜索,了解到魏永明的Minigui项目是对Windows GUI和GDI的模仿。通过下载vc6版本的MinGUI,能够进行调试。在分析代码时,发现事件回调、消息链等常见功能并无特别之处。而DefaultMainWinProc、InvalidateRect、PopupMenuTrackProc等函数则更具实际意义。GUI就像是在显存沙漠中绘画,有其既定规则。DefaultMainWinProc负责实现画最大、最小按钮、窗口方框等常规操作,而绘制的动作有其先后顺序,即消息的先后处理。

       GDI部分则展示了如何在显存中书写文字,包括粗体、斜体等效果;如何绘制图标和位图;关键的rgn裁剪矩形技术,用于加速绘制,矩形外的绘制不会进行。rgn裁剪矩形的运算包括加、减、合、并等,对应着窗口的各种移动和形状改变。不同线程之间的窗口管理由HWND_DESKTOP统一处理,desktop-common.c相当于窗口管理器,不同程序无法直接获取其他窗口的位置和大小,由其进行统一管理。desktop包含三个线程,分别负责捕捉键盘、鼠标消息,以及实际消息的处理,以及窗口给desktop的消息交由DesktopWinProc统一处理。

       MinGUI的模拟版本在调试方面虽能使用,但功能实现上有缺失。相比之下,libminigui-1.0.提供了完整的gui、gdi、kernel代码,定义了大部分的画窗套路和动作,只需要关注关键部分和自己定义的动作即可。

       Linux的GUI采用了xwindows,通过socket将xclient进程中的窗口绘制信息传输到xserver,由xserver统一处理。xclient之间互相不知道窗口的位置和大小,因此都通过xserver进行绘制,xserver还包含了窗口管理器。而MinGUI在一个进程的多个线程中实现,不存在窗口管理器与进程间位置信息传递的问题。

       Windows使用wink.sys作为窗口管理器,作为内核态程序,用户态的动态链接库在不同进程间数据段不同,但内核态的数据段统一,因此实现了窗口管理。Windows显示流畅的原因之一在于窗口管理机制与MinGUI的desktop类似,但实现机制有所不同。

       工作繁忙,业余时间进行学习。尽管以前对GUI有过大量无用功,但这次的探索仅用几天时间便有所收获。

微软的 Windows 助手——UFO,原理剖析

       微软Windows助手UFO的深度解析

       近年来,操作系统助手日益受到关注,它们通过用户指令自动完成任务,如在桌面、手机和各类设备上。微软新近开源的UFO,以其基于GPT-4V和Agent的跨应用调度功能备受瞩目。本文将通过源码分析,探索其工作原理。

       直接跳转至结论,用户可以了解到UFO如何执行任务。以购买车票为例,首先,助手会选择打开的应用,这里需要预先启动浏览器,否则助手无法识别。内部调用gpt-4v接口的代码中,我们可以通过设置断点观察其prompt指令。

       获取可用软件的过程,UFO依赖pywinauto库,它能识别并标记浏览器界面中的操作元素,便于助手识别并执行操作。然而,在尝试过程中,遇到了TPM(tokens per min)的限制问题,尽管实际请求的令牌远未达到上限,这可能与输入的两张有关。

       尽管如此,UFO的基本操作思路清晰,即通过选择应用、识别操作元素并执行任务。对于更深入的探讨,可以参考相关专栏,那里有更多关于操作系统助手和Agent的详细内容。

巨硬Application Inspector初体验On Mac

       Application Inspector 是微软开源的软件特征源码分析工具,主要功能在于源码分析与检查。用户需首先配置好 dotnet 环境,通过巨硬提供的安装包完成安装。接着,将/usr/local/lib加入profile并source使其生效,运行dotnet --version验证安装成功。

       随后,用户需将代码编译至目标平台,如osx-x,编译后,将运行成功提示信息反馈给用户。体验过程中,用户在命令行输入命令,进入编译后的目录,尝试运行Application Inspector。

       测试运行后,可以看到其支持的命令和功能,如analyze命令,用户可输入参数进行源码分析。对于本地源码,使用analyze命令,结果默认以html格式展示,检测速度快,完成后自动打开报告页面。

       报告页面设计美观,用户反馈体验时指出,安装与使用较为方便,输出结果美观。然而,对于特定语言如java源码,工具支持度一般,输出内容主要涉及js和html,作为代码审计工具,功能有限,可能与默认规则有关。用户建议,期待工具持续发展,增强功能,以提高其在代码审计领域的应用价值。

copyright © 2016 powered by 皮皮网   sitemap