欢迎访问皮皮网官网
皮皮网

【带客服网站源码】【上车起爆指标源码】【匿名传信源码】源码控制讲解

时间:2025-01-13 21:18:34 分类:焦点 来源:openssl源码查看版本

1.零基础读懂视频播放器控制原理: ffplay 播放器源代码分析
2.Async、源码Await 从源码层面解析其工作原理
3.干货|开源MIT Min cheetah机械狗设计(二十三)运动控制器源码解析---控制和优化思想
4.关于一款开源远程控制软件(gh0st)的控制源码分析(一)
5.LabVIEW与TortoiseSVN进行源代码控制
6.UE4 LevelSequence源码剖析(一)

源码控制讲解

零基础读懂视频播放器控制原理: ffplay 播放器源代码分析

       视频播放器的工作原理基于对音视频帧序列的控制。不同播放器可能在音视频同步上采用更复杂的讲解帧预测技术,以提升音频与视频的源码同步性。ffplay,控制作为FFmpeg自带的讲解带客服网站源码播放器,使用了FFmpeg解码库与用于视频渲染显示的源码SDL库。本文将详细分析ffplay源码,控制旨在用基础且系统的讲解方法,解读音视频同步、源码播放/暂停、控制快进/后退等控制原理。讲解

       相较于在移动端查看音视频代码,源码使用PC端通过VS进行查看和调试,控制能更高效迅速地分析播放器原理。讲解由于ffplay在命令行界面的使用体验不够直观,本文将分析在CSDN上移植到VC的ffplay代码(ffplay for MFC)。

       文章将按照以下结构展开:

       一、解析MP4文件结构,理解视频文件的构成与参数。

       二、从最简单的播放器入手,分析FFmpeg解码与SDL显示流程。

       三、提出并解答五个关键问题,涉及音视频组合、同步、时间与帧数控制等。

       四、上车起爆指标源码深入ffplay代码,从总体流程图入手,理解其代码结构。

       五、详细分析视频播放器的操作控制机制,包括关键结构体VideoState的作用,PTS和DTS的原理与应用,以及如何实现音视频同步。

       六、总结反思,强调基础概念、流程图与PC端调试的重要性。

       通过本文,我们将深入解析ffplay播放器的音视频播放与控制原理,旨在提供更直观、基础的解读方式,帮助读者理解和掌握视频播放器的核心技术。

Async、Await 从源码层面解析其工作原理

       深入理解 Async 和 Await 的工作原理,往往需要从源码层面进行剖析。使用 Babel 进行转换后,可以清晰地发现 Async 和 Await 实际上借助了 switch-case 和 promise,实现对流程的控制。以一个使用 Async 和 Await 的函数为例,我们仅关注核心部分代码。

       经过 Babel 转换后的 name 函数,可以被拆分为三个主要部分:await 部分、return 部分以及 async 流程控制的匿名传信源码结束部分(即 case "end")。这个拆分使得流程控制变得更为直观。在流程控制中,每一步执行后,都会等待合适的时机进入下一次执行。

       这个“合适的时机”并非由 Async 内部决定,而是由执行的内容决定。例如,在发送异步请求后,只有在请求返回后才会进入下一个 case。

       为了实现流程控制,需要借助 regenerator-runtime 这个 generator、Async 函数的运行时。它负责将 name 函数进行包装,并添加流程控制所需的信息。如 _context,以及用于流程控制的关键 helper,如 _asyncToGenerator 和 asyncGeneratorStep。通过这些辅助工具,再在 regenerator-runtime 的基础上进行一层包装,最终得到一个可以执行的函数。这个函数实际执行时,会调用封装后的函数。

       在封装后的函数中,async1、async2 等实际上是在执行最终的封装函数内部的调用。这里的第三步是 Async 函数的核心机制。在 Promise.resolve(value).then(_next) 中,value 是会动爱心的源码每个分段最后的 case 返回的值。如果 value 是一个 Promise,那么在它 resolved 后,会将其.then添加到微任务队列。如果 value 不是一个 Promise,则直接添加,因为.then是一个微任务,当执行到它时,会调用_next,从而开始执行下一个 case。

       经过转换后的代码展示了封装后的函数内容,最终执行的是封装后的函数,因此说 async1、async2 执行实际上是执行封装后的函数。在封装后的函数内部,会调用 async1、async2。

干货|开源MIT Min cheetah机械狗设计(二十三)运动控制器源码解析---控制和优化思想

       开源MIT Min Cheetah机械狗设计:控制与优化解析

       在这个开源项目中,MIT Min Cheetah机械狗的控制与优化策略是其亮点,特别是MPC控制与QP优化策略。WBC作为辅助手段,已在前期讨论,本文主要聚焦于这两个核心部分。

       控制问题的核心是通过状态方程,如微分方程,来描述和控制系统的运动,如牛顿第二定律。它不仅体现了物理规律,如位移与速度的文案狗ai源码关系,而且揭示了如何通过不同的输入策略达到期望状态,这便是优化的起点。

       优化则涉及代价函数的选择和权重设置。LQR关注整个时间的最优性,而MPC关注当前时刻到未来的最优路径。LQR是闭环控制,而MPC是开环的,这使得MPC可以处理不等式约束,适应更复杂的控制环境。

       相较于传统PID控制,现代控制理论如状态空间模型,具有更强的系统理解能力,但复杂项目中,传统控制方法仍占有重要地位。例如在汽车行业,虽然现代控制算法有优势,但安全性和落地性仍是考量的关键。

       控制算法的应用领域主要集中在无人机、机器人和汽车工业,尤其是动力学模型成熟的场景。机器学习和强化学习作为补充,分别在参数辨识和规则环境中的应用有所贡献,但仍有发展空间。

       接下来,我们将深入探讨机械狗的仿真实现,以及可能的扩展功能,如路径规划和激光雷达扫描,以期为设计提供更全面的支持。

关于一款开源远程控制软件(gh0st)的源码分析(一)

       gh0st软件专为远程控制设计,支持远程文件传输、视频连接等功能,类似QQ远程桌面。软件由gh0st_Client与gh0st_Server两部分组成。

       启动gh0st_server,VS调试,程序运行后,中断所有调试,打开Threads窗口和CallStack窗口。gh0st_server作为服务端,启动时创建个线程,主线程负责资源初始化,创建监听线程ListenThreadProc以监听客户端连接。

       主线程完成初始化后,ListenThreadProc进入循环,等待连接请求,通过m_hkillEvent事件与主线程同步。当主线程发出关闭命令,m_hkillEvent设置为可信任状态,工作线程退出循环,进行资源回收,增强程序稳定性。

       gh0st_server的核心在于IOCPServer类,它负责网络事件检测、IO请求与数据收发。当有网络事件发生时,关键业务逻辑将处理数据接收与解包等操作,详情将在后续章节介绍。

LabVIEW与TortoiseSVN进行源代码控制

       LabVIEW与TortoiseSVN进行源代码控制的步骤解析

       LabVIEW与TortoiseSVN进行源代码控制通常采用TortoiseSVN的用户界面实现。该工具集成了Windows的资源管理功能,允许通过文件管理器对不同版本的项目进行管理。本文将详细指导如何创建源代码资料库、将LabVIEW项目添加至库中、提交更改内容以及恢复至之前版本的方法。

       首先,请确保安装了TortoiseSVN,它可以在相关链接部分免费获取。

       创建资料库操作旨在创建一个特殊文件夹,用于保存项目文件的所有版本。实际应用中,资料库通常存储在服务器上,可部署在多个客户端,以实现对服务器上的代码更新开发。

       操作步骤如下:

       1. 打开Windows资源管理器,新建文件夹。

       2. 右键单击新文件夹,选择TortoiseSVN»Createrepository here...

       3. 确认提示框中的操作,此文件夹将包含项目的所有版本。重要的是,后续操作中,不要修改此文件夹中的任何文件,并定期备份资料库。

       将LabVIEW项目添加到资料库:

       此步骤将选择要添加的文件。实际上,这一步不会将文件复制到资料库中,复制操作将在后续步骤中进行。

       操作步骤如下:

       1. 创建空白文件夹,右键单击选择SVNCheckout...

       2. 键入创建的资料库路径(格式为“file:///c:/your-repository”),其中your-repository为资料库名称。

       3. 将LabVIEW项目文件(包括VI)复制到新文件夹。

       4. 在文件夹所属目录中右键点击,选择TortoiseSVN»Add...

       提交资料库更改:

       提交操作用于确认更改内容,对资料库进行操作。更改包括添加、删除文件等,提交时才会真正向资料库中添加或删除文件。

       操作步骤如下:

       1. 右键单击文件夹,选择SVNCommit...

       2. 在信息部分输入备注文本描述更改内容,并选择要提交的修改文件。

       3. 完成后单击“确定”。

       更改资料库中项目的版本:

       允许查看旧版本并进行修改,以便根据需要恢复代码。

       操作步骤如下:

       右键点击文件夹或目录,选择TortoiseSVN»Updateto revision...

       选择所需版本并单击确定。

       将项目更新到最新版本:

       操作步骤如下:

       右键点击文件夹,选择SVNUpdate,以将整个文件夹内容更新为最新版本。

       .svn文件夹导致的批量编译问题:

       TortoiseSVN在每个源代码控制文件夹内创建.svn文件夹。在TortoiseSVN源代码控制下,批量编译文件夹时可能会遇到问题,特别是当涉及.svn文件夹中的文件时。有关更多信息,请参阅相关链接。

       TortoiseSVN提供了多种特性,包括简单易用性、强大的提交对话框、图形功能等,以及独立的项目设置和问题追踪系统。此外,它还支持多种语言版本,并保持稳定性能。

       TortoiseSVN还提供了额外的工具,如TortoiseMerge、TortoiseBlame和TortoiseIDiff,以帮助解决冲突和查看文件修改。

UE4 LevelSequence源码剖析(一)

       UE4的LevelSequence源码解析系列将分四部分探讨,本篇聚焦Runtime部分。Runtime代码主要位于UnrealEngine\Engine\Source\Runtime\MovieScene目录,结构上主要包括Channels、Evaluation、Sections和Tracks等核心模块。

       ALevelSequenceActor是Runtime的核心,负责逐帧更新,它包含UMovieSceneSequence和ULevelSequencePlayer。ALevelSequenceActor独立于GameThread更新,并且在Actor和ActorComponent更新之前,确保其在RuntTickGroup之前执行。

       IMovieScenePlaybackClient的关键接口用于绑定,编辑器通过IMovieSceneBindingOwnerInterface提供直观的蓝图绑定机制。UMovieSceneSequence是LevelSequence资源实例,它支持SpawnableObject和PossessableObject,便于控制对象的拥有和分离。

       ULevelSequencePlayer作为播放控制器,由ALevelSequenceActor的Tick更新,具有指定对象在World和Sublevel中的功能,还包含用于时间控制的FMovieSceneTimeController。UMovieSceneTrack作为底层架构,由UMovieSceneSections组成,每个Section封装了Section的帧范围和对应Channel的数据。

       序列的Eval过程涉及EvalTemplate和ExecutionTokens,它们协同工作模拟Track。FMovieSceneEvaluationTemplate定义了Track的模拟行为,而ExecutionTokens则是模拟过程中的最小单元。真正的模拟操作在FMovieSceneExecutionTokens的Apply函数中执行,通过BlendingAccumulator进行结果融合。

       自定义UMovieSceneTrack需要定义自己的EvaluationTemplate,这部分将在编辑器拓展部分详细讲解。序列的Runtime部分展示了如何在GameThread中高效管理和模拟场景变化,为后续的解析奠定了基础。

copyright © 2016 powered by 皮皮网   sitemap