1.å¦ä½å¨windowsä¸ç¼åRç¨åºå
2.声线年龄层怎么划分?
3.Python机器学习系列拟合和回归傻傻分不清?一文带你彻底搞懂它
å¦ä½å¨windowsä¸ç¼åRç¨åºå
å¨Windowsç¯å¢ä¸å¦ä½ç¼åRç¨åºå ï¼å³çæä¾linuxç¯å¢ç¼è¯è¿è¡çtar.gzæ件ï¼ä¹çæä¾windowsä¸ä½¿ç¨ç.zipæ件å¢ï¼å ¶å®å¹¶ä¸å¤æï¼åªè¦ä¸è½½ä¸äºå·¥å ·è½¯ä»¶ï¼æç §ç¸åºçæ¥éª¤å¡«åç¸åºçâè¡¨æ ¼âï¼ç»§èè¿è¡ä¸äºç®åçæ令ï¼å°±å¯ä»¥çæRçç¨åºå äºã
ç¼åRç¨åºå é常å æ¬ä»¥ä¸å æ¥ï¼
ï¼1ï¼ å·¥å ·è½¯ä»¶Rtoolsçå®è£ åå¤é软件çå®è£ ã
ï¼2ï¼ rèæ¬çåå¤ï¼ä¹å°±æ¯ç¨æ¥çæç¨åºå çå½æ°èæ¬ã
ï¼3ï¼ å©ç¨Rä¸èªå¸¦çpackage.skeleton()å½æ°ï¼çæå¶ä½å æéè¦çDescription æ件å帮å©æ件帮å©æ件.rdã
ï¼4ï¼ ç¼è¾è¯¥å½æ°çæçDescription æ件å帮å©æ件.rd
ï¼5ï¼ å¨windows cmdçå½ä»¤è¡ä¸è¾å ¥ç¸åºçå½ä»¤ï¼çæzipæ件æè .tar.gz
ä¸é¢æ们æ¥ä¸èµ·å»ºç«åªæä¸ä¸ªå½æ°çRç¨åºå ï¼æ¥è¯¦ç»è¯´æï¼
ä¸ å·¥å ·è½¯ä»¶å®è£ åé ç½®
å¶ä½rå çå·¥å ·è½¯ä»¶å æ¬Rtoolsï¼HTMLç¼è¯å¨ï¼MikTeX æCteçï¼å¤é软件ä¸ä¸å®è¦å®è£ ï¼ï¼
1 å·¥å ·è½¯ä»¶å®è£
ï¼1ï¼Rtoolsï¼å¶ä½Rå ç主è¦å·¥å ·ï¼
Rtoolsæ¯å¨windowsä¸å¶ä½Rå çä¸ç³»åå·¥å ·ï¼å ¶ä¸å æ¬
1ï¼ CYGWIN å¨Windowsä¸æ¨¡æUNIXç¯å¢
2ï¼ MinGWç¼è¯å¨ï¼å¯ç¨æ¥ç¼è¯CåFortranè¯è¨ã
3ï¼ Perl
ä¸è½½å°åï¼
Maintainer: helixcn <zhangjl@ibcas.ac.cn>
Description: To give the exactly results of linear regression.
License: GNU 2 or later
LazyLoad: yes
ï¼2ï¼manæ件夹ä¸.rdæ件ç¼è¾
manæ件夹ä¸å å«ä¸¤ä¸ªæ件 linmod.Rdålinmod-package.Rdï¼åå«æ¯å¯¹linmod()å½æ°ålinmodå çä»ç»ï¼ä¸é¢é项填å:
1ï¼ linmod.Rd
\name{ linmod}
\Rdversion{ 1.1}
\alias{ linmod}
%- Also NEED an '\alias' for EACH other topic documented here.
\title{
linear regression
}
\description{
to give the more exactly results of linear regression
}
\usage{
linmod(x,源码 y)
}
%- maybe also 'usage' for other objects documented here.
\arguments{
\item{ x}{
a numeric design matrix for the model
}
\item{ y}{
a numeric vector of responses
}
}
\details{
%% ~~ If necessary, more details than the description above ~~
}
\value{
%% ~Describe the value returned
%% If it is a LIST, use
%% \item{ comp1 }{ Description of 'comp1'}
%% \item{ comp2 }{ Description of 'comp2'}
%% ...
}
\references{
Friedrich Leisch, Creating R Packages: A Tutorial
}
\author{
helixcn
}
\note{
Please read Friedrich Leisch,
}
%% ~Make other sections like Warning with \section{ Warning }{ ....} ~
\seealso{
%% ~~objects to See Also as \code{ \link{ help}}, ~~~
}
\examples{
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y)
{
qx <- qr(x)
coef <- solve.qr(qx, y)
df <- nrow(x) - ncol(x)
sigma2 <- sum((y - x \%*\% coef)^2)/df
vcov <- sigma2 * chol2inv(qx$qr)
colnames(vcov) <- rownames(vcov) <- colnames(x)
list(coefficients = coef, vcov = vcov, sigma = sqrt(sigma2),
df = df)
}
}
% Add one or more standard keywords, see file 'KEYWORDS' in the
% R documentation directory.
\keyword{ ~kwd1 }
\keyword{ ~kwd2 }% __ONLY ONE__ keyword per line
2ï¼linmod-package.Rd
\name{ linmod-package}
\Rdversion{ 1.1}
\alias{ linmod-package}
\alias{ linmod}
\docType{ package}
\title{ Linear Regression Modification}
\description{ to Give the more exactly output of linear regression rather than R default}
\details{
\tabular{ ll}{
Package: \tab linmod\cr
Type: \tab Package\cr
Version: \tab 1.0\cr
Date: \tab --\cr
License: \tab GNU 2.0 or later\cr
LazyLoad: \tab yes\cr
}
~~The aim of the package was to give the more exactly output of linear regression~~ linmod~~
}
\author{ helixcn
Maintainer: helixcn <helixcn@.com>}
\references{
Friedrich Leisch,,Creating R Packages: A Tutorial
}
\seealso{ lm}
\examples{
data(cats, package="MASS")
mod1 <- linmod(Hwt~Bwt*Sex, data=cats)
mod1
summary(mod1)
}
å éè¿cmdå建Rå
å¼å§>è¿è¡>cmd
é®å ¥ cd c:\pa\ å°å·¥ä½ç®å½è½¬ç§»å°c:/paä¸
é®å ¥ Rcmd build --binary linmod å¶ä½window zipå
é®å ¥ Rcmd build linmod å¶ä½linuxå¹³å°ä¸å¯è¿è¡çtar.gzå
å½ä»¤è¿è¡å®ä¹åå¯ä»¥åç°ï¼å¨c:/pa/æ件夹ä¸åå«çæäºlinmod.zipålinmod.tar.gzå缩å ã
注æR CMD ç³»åå½ä»¤æ¯å¨windowsæ§å¶å°ä¸è¿è¡ï¼èéRæ§å¶å°
åèç½å
[1]/post/5cfeda9d3dc
作者:Michael Notter
Python机器学习系列拟合和回归傻傻分不清?一文带你彻底搞懂它
在Python机器学习的探索中,理解拟合与回归这两个概念至关重要。分析它们虽然都涉及数据与模型的源码关联,但有着明确的分析差异。拟合是源码易语言管家源码个广义概念,涵盖了将离散数据点通过线性或非线性方式映射到一条曲线的分析android 图片编辑源码整个过程,旨在减小数据点与拟合曲线的源码偏差。回归分析则是分析拟合的一种具体实现,它探究变量间的源码定量关系,以建立模型。分析
回归拟合则根据复杂度分为几个类别。源码一元线性回归如np.polyfit方法,分析通过求解系数来拟合数据,源码2.6.3.78开源源码如法一中的分析[8., -.],sklearn的源码LinearRegression方法也得到类似结果。曲线拟合如curve_fit则适用于非线性模型,如法三中的消消乐html源码[8., -.]。一元多项式回归,如2次多项式,np.polyfit、sklearn的php货币交易源码LinearRegression和curve_fit都能得到系数,只是形式不同。
对于更复杂的函数拟合,如指数函数,curve_fit依然是首选,如得到的最佳系数[2., 0.]。这些方法不仅适用于一元,也是多元回归建模的基础。想深入了解数据集和源码的朋友,可以随时联系作者获取更多信息。