1.鸿蒙OS是鸿蒙鸿蒙用什么语言编写的,它的源码源码应用又是用什么语言可以编写
2.鸿蒙轻内核M核源码分析:中断Hwi
3.鸿蒙轻内核M核的故障管家:Fault异常处理
4.鸿蒙轻内核M核源码分析:LibC实现之Musl LibC
5.v51.04 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码
6.鸿蒙基于linux还是unix
鸿蒙OS是用什么语言编写的,它的分析分析应用又是用什么语言可以编写
鸿蒙操作系统是由华为自主研发的,其架构基于Linux内核。鸿蒙鸿蒙内核之上是源码源码麒麟处理器的运行库,为系统提供了底层支持。分析分析套在线源码编译器用于将源代码转换为可执行文件,鸿蒙鸿蒙虚拟机则负责运行这些文件。源码源码鸿蒙系统的分析分析源代码主要使用C语言编写,这是鸿蒙鸿蒙一种广泛应用于操作系统开发的编程语言,因其高效性和稳定性著称。源码源码
开发鸿蒙应用程序需要使用华为开发工具DevEco Studio。分析分析DevEco Studio是鸿蒙鸿蒙华为为鸿蒙系统设计的集成开发环境,它不仅支持程序的源码源码开发、调试和维护,分析分析还提供了丰富的功能来帮助软件工程师进行高效工作。DevEco Studio支持多种编程语言,包括但不限于C、C++以及JavaScript等,这使得开发者可以根据项目需求灵活选择合适的语言。
值得一提的是,DevEco Studio还具备可视化编程能力。通过直观的界面,开发者可以更加便捷地构建应用程序,实时查看编程效果。这种可视化编程方式不仅简化了开发流程,也极大地降低了开发难度。对于初学者来说,这无疑是一种很好的学习工具。
由于鸿蒙系统采用了多语言支持策略,开发者可以使用C、C++、JavaScript等语言进行开发。这些语言各有优势,能够满足不同类型的应用场景。例如,C和C++适用于对性能要求较高的场景,而JavaScript则更适合Web开发和跨平台应用。
鸿蒙轻内核M核源码分析:中断Hwi
在鸿蒙轻内核源码分析系列中,本文将深入探讨中断模块,旨在帮助读者理解中断相关概念、鸿蒙轻内核中断模块的源代码实现。本文所涉及源码基于OpenHarmony LiteOS-M内核,读者可通过开源站点 gitee.com/openharmony/k... 获取。ava辅助源码中断概念介绍
中断机制允许CPU在特定事件发生时暂停当前执行的任务,转而处理该事件。这些事件通常由外部设备触发,通过中断信号通知CPU。中断涉及硬件设备、中断控制器和CPU三部分:设备产生中断信号;中断控制器接收信号并发出中断请求给CPU;CPU响应中断,执行中断处理程序。中断相关的硬件介绍
硬件层面,中断源分为设备、中断控制器和CPU。设备产生中断信号;中断控制器接收并转发这些信号至CPU;CPU在接收到中断请求后,暂停当前任务,转而执行中断处理程序。中断相关的概念
每个中断信号都附带中断号,用于识别中断源。中断优先级根据事件的重要性和紧迫性进行划分。当设备触发中断后,CPU中断当前任务,执行中断处理程序。中断处理程序由设备特定,且通常以中断向量表中的地址作为入口点。中断向量表按中断号排序,存储中断处理程序的地址。鸿蒙轻内核中断源代码
中断相关的声明和定义
在文件 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中定义了结构体、全局变量和内联函数。关键变量 g_intCount 记录当前正在处理的中断数量,内联函数 HalIsIntActive() 用于检查是否正在处理中断。中断向量表在中断初始化过程中设置,用于映射中断号到相应的中断处理程序。中断初始化 HalHwiInit()
系统启动时,在 kernel\src\los_init.c 中初始化中断。HalHwiInit() 函数在 kernel\arch\arm\cortex-m7\gcc\los_interrupt.c 中实现,负责设置中断向量表和优先级组,配置中断源,如系统中断和定时器中断。创建中断 HalHwiCreate()
开发者可通过 HalHwiCreate() 函数注册中断处理程序,传入中断号、优先级和中断模式。函数内部验证参数,设置中断处理程序,最终通过调用 CMSIS 函数完成中断创建。删除中断 HalHwiDelete()
中断删除操作通过 HalHwiDelete() 实现,接收中断号作为参数,古董网站源码调用 CMSIS 函数失能中断,设置默认中断处理程序,完成中断删除。中断处理执行入口程序
默认的中断处理程序 HalHwiDefaultHandler() 仅用于打印中断号后进行死循环。HalInterrupt() 是中断处理执行入口程序的核心,它包含中断数量计数、中断号获取、中断前后的操作以及调用中断处理程序的逻辑。开关中断
开关中断用于控制CPU是否响应外部中断。通过宏 LOS_IntLock() 关闭中断, LOS_IntRestore() 恢复中断状态, LOS_IntUnLock() 使能中断。这组宏对应汇编函数,使用寄存器 PRIMASK 控制中断状态。小结
本文详细解析了鸿蒙轻内核中断模块的源代码,涵盖了中断概念、初始化、创建、删除以及开关操作。后续文章将带来更多深入技术分享。欢迎在 gitee.com/openharmony/k... 分享学习心得、提出问题或建议。关注、点赞、Star 和 Fork 到个人账户,便于获取更多资源。鸿蒙轻内核M核的故障管家:Fault异常处理
摘要:本文简要介绍了Fault异常类型、向量表及其代码,以及异常处理的C语言程序,随后详细分析了异常处理汇编函数的实现代码。
本文内容来源于华为云社区《鸿蒙轻内核M核源码分析系列十八 Fault异常处理》,作者:zhushy。
Fault异常处理模块与OpenHarmony LiteOS-M内核芯片架构紧密相关,它能够处理HardFault、MemManage、BusFault、UsageFault等故障异常。关于Cortex-M芯片的相关知识,不在本文的讨论范围内,读者可参考《Cortex™-M7 Devices Generic User Guide》等官方资料。本文所涉及的源码以OpenHarmony LiteOS-M内核为例,可在开源站点gitee.com/openharmony/k...获取。
1、有赚网源码Fault Type异常类型
Fault类型表格显示了各种故障及其处理机制、Bit Name标记、Fault status register故障状态寄存器。该表格摘自《Cortex™-M7 Devices Generic User Guide》。
2、Vector table向量表
向量表包含栈指针的复位值和开始地址,也称为异常向量。异常可以看作特殊的中断,本文主要关注NMI、HardFault、Memory management fault、Bus fault、Usage fault、SVCall等异常。
在中断初始化时,会初始化该异常向量表,代码位于kernel\arch\arm\cortex-m7\gcc\los_interrupt.c。本文主要分析这些汇编函数的代码。
3、HalExcHandleEntry异常处理C程序入口
HalExcHandleEntry异常处理函数是汇编异常函数跳转到C语言程序的入口,定义在文件kernel\arch\arm\cortex-m7\gcc\los_interrupt.c,被kernel\arch\arm\cortex-m7\gcc\los_exc.S文件中的汇编函数调用。函数参数由汇编程序中的R0-R3寄存器传值进来。
4、Los_Exc异常处理汇编函数
上文介绍了Vector table向量表,已经提到了在文件kernel\arch\arm\cortex-m7\gcc\los_exc.S中定义的异常处理函数。当发生Fault故障异常时,会调度执行这些异常处理函数,本文会详细分析函数的源代码来掌握内核如何处理这些发生的异常。
本文介绍了Fault异常类型、向量表及其代码,异常处理C语言程序,异常处理汇编函数实现代码。感谢阅读,如有任何问题、建议,都可以在博客下留言给我,谢谢。
鸿蒙轻内核M核源码分析:LibC实现之Musl LibC
本文探讨了LiteOS-M内核中Musl LibC的实现,重点关注文件系统与内存管理功能。Musl LibC在内核中提供了两种LibC实现选项,使用者可根据需求选择musl libC或newlibc。本文以musl libC为例,傲视江湖源码深度解析其文件系统与内存分配释放机制。
在使用musl libC并启用POSIX FS API时,开发者可使用文件kal\libc\musl\fs.c中定义的文件系统操作接口。这些接口遵循标准的POSIX规范,具体用法可参阅相关文档,或通过网络资源查询。例如,mount()函数用于挂载文件系统,而umount()和umount2()用于卸载文件系统,后者还支持额外的卸载选项。open()、close()、unlink()等文件操作接口允许用户打开、关闭和删除文件,其中open()还支持多种文件创建和状态标签。read()与write()用于文件数据的读写操作,lseek()则用于文件读写位置的调整。
在内存管理方面,LiteOS-M内核提供了标准的POSIX内存分配接口,包括malloc()、free()与memalign()等。其中,malloc()和free()用于内存的申请与释放,而memalign()则允许用户以指定的内存对齐大小进行内存申请。
此外,calloc()函数在分配内存时预先设置内存区域的值为零,而realloc()则用于调整已分配内存的大小。这些函数构成了内核中内存管理的核心机制,确保资源的高效利用与安全释放。
总结而言,musl libC在LiteOS-M内核中的实现,通过提供全面且高效的文件系统与内存管理功能,为开发者提供了强大的工具集,以满足不同应用场景的需求。本文虽已详述关键功能,但难免有所疏漏,欢迎读者在遇到问题或有改进建议时提出,共同推动技术进步。感谢阅读。
v. 鸿蒙内核源码分析(ELF格式) | 应用程序入口并非main | 百篇博客分析OpenHarmony源码
鸿蒙内核源码分析(ELF格式篇) | 应用程序入口并非main
深入解析ELF格式与鸿蒙源码的关系,探寻应用程序入口的奥秘。本文将带你从一段简单的C代码开始,跟踪其编译成ELF格式后的神秘结构,揭秘ELF的组成与内部运作机制。
以E:\harmony\docker\case_code_目录下的main.c文件为例,通过编译生成ELF文件,运行后使用readelf -h命令查看应用程序头部信息。了解ELF文件的全貌,从ELF头信息、段信息、段区映射关系、区表等多方面深入探讨。
ELF格式文件由四大部分组成:头信息、段信息、段区映射关系和区表。头信息包含关键元数据,如文件类型、字节顺序、文件大小等;段信息描述了可执行代码和数据段的属性和位置;段区映射关系展示了段与区的关联;区表则存储了每个区的详细信息。
通过readelf -l命令,可以观察到段信息及其在程序中的作用,如初始化数组、动态链接、栈区等。在运行时,不同段以特定方式映射到内存中,实现代码的加载和执行。
在深入分析后,发现应用程序的真正入口并非通常理解的main函数,而是一个名为_start的特殊函数。这揭示了鸿蒙内核在启动时的执行流程,以及如何在ELF格式中组织和加载代码。
本文以ELF格式为切入点,带你全面理解鸿蒙内核源码的组织结构与运行机制。通过百万汉字注解,带你精读内核源码,深入挖掘其地基。在Gitee仓(gitee.com/weharmony/ker...)同步注解,共同探索鸿蒙研究站(weharmonyos)的奥秘。
鸿蒙基于linux还是unix
鸿蒙基于Linux。Unix是一个闭源操作系统,其源代码需要通过与所有者AT&T的协议才能获得许可。相对而言,Linux是开源的,无需授权。鸿蒙系统旨在集成电脑、手机、汽车等多种设备,实现大一统。Linux在电脑领域的应用生态良好,基于Linux开发有助于解决应用生态问题。
华为选择基于Linux开发鸿蒙系统是显而易见的。目前,华为手机的EMUI系统是基于谷歌的Android系统开发的。Android本身也基于Linux,这不仅解决了生态问题,还保证了与现有Android应用程序的良好兼容性。对于新系统而言,生态是成功的关键。
关于鸿蒙的其他描述如下:
1. 云将东游,过扶摇之枝,而适遭鸿蒙。
2. 西穷窅冥之党,东开鸿濛之先。
3. 外则正南极海,邪界虞渊,鸿濛沆茫,碣以崇山。颜师古注,鸿濛沆茫,广大貌。
4. 提挈天地而委万物,以鸿濛为景柱,而浮扬乎无畛崖之际。
5. 半生堕落忧患界,万事睁庆元在鸿濛间枝册。又试问鸿蒙初辟时,又哪里有贫富贵贱?
6. 静原生智慧,愁亦破鸿濛。是谓志意存鸿蒙,有弦化无弦也。
7. 鸿蒙,为宇宙未分,时空皆无“时”的存在,为宇宙时空等一切万物的元气,一切概念的起源,所有时间空间猛早宏的原初状态。
8. 我所居兮,青埂之峰;我所游兮,鸿蒙太空。
以上内容参考:百度百科—鸿蒙
umi3源码解析之核心Service类初始化
前言
umi是一个插件化的企业级前端应用框架,在开发中后台项目中应用颇广,确实带来了许多便利。借着这个契机,便有了我们接下来的“umi3源码解析”系列的分享,初衷很简单就是从源码层面上帮助大家深入认知umi这个框架,能够更得心应手的使用它,学习源码中的设计思想提升自身。该系列的大纲如下:
开辟鸿蒙,今天要解析的就是第一part,内容包括以下两个部分:
邂逅umi命令,看看umidev时都做了什么?
初遇插件化,了解源码中核心的Service类初始化的过程。
本次使用源码版本为?3.5.,地址放在这里了,接下来的每一块代码笔者都贴心的为大家注释了在源码中的位置,先clone再食用更香哟!
邂逅umi命令该部分在源码中的路径为:packages/umi
首先是第一部分umi命令,umi脚手架为我们提供了umi这个命令,当我们创建完一个umi项目并安装完相关依赖之后,通过yarnstart启动该项目时,执行的命令就是umidev
那么在umi命令运行期间都发生了什么呢,先让我们来看一下完整的流程,如下图:
接下来我们对其几个重点的步骤进行解析,首先就是对于我们在命令行输入的umi命令进行处理。
处理命令行参数//packages/umi/src/cli.tsconstargs=yParser(process.argv.slice(2),{ alias:{ version:['v'],help:['h'],},boolean:['version'],});if(args.version&&!args._[0]){ args._[0]='version';constlocal=existsSync(join(__dirname,'../.local'))?chalk.cyan('@local'):'';console.log(`umi@${ require('../package.json').version}${ local}`);}elseif(!args._[0]){ args._[0]='help';}解析命令行参数所使用的yParser方法是基于yargs-parser封装,该方法的两个入参分别是进程的可执行文件的绝对路径和正在执行的JS文件的路径。解析结果如下:
//输入umidev经yargs-parser解析后为://args={ //_:["dev"],//}在解析命令行参数后,对version和help参数进行了特殊处理:
如果args中有version字段,并且args._中没有值,将执行version命令,并从package.json中获得version的值并打印
如果没有version字段,args._中也没有值,将执行help命令
总的来说就是,如果只输入umi实际会执行umihelp展示umi命令的使用指南,如果输入umi--version会输出依赖的版本,如果执行umidev那就是接下来的步骤了。
提问:您知道输入umi--versiondev会发什么吗?
运行umidev
//packages/umi/src/cli.tsconstchild=fork({ scriptPath:require.resolve('./forkedDev'),});process.on('SIGINT',()=>{ child.kill('SIGINT');process.exit(0);});//packages/umi/src/utils/fork.tsif(CURRENT_PORT){ process.env.PORT=CURRENT_PORT;}constchild=fork(scriptPath,process.argv.slice(2),{ execArgv});child.on('message',(data:any)=>{ consttype=(data&&data.type)||null;if(type==='RESTART'){ child.kill();start({ scriptPath});}elseif(type==='UPDATE_PORT'){ //setcurrentusedportCURRENT_PORT=data.portasnumber;}process.send?.(data);});本地开发时,大部分脚手架都会采用开启一个新的线程来启动项目,umi脚手架也是如此。这里的fork方法是基于node中child_process.fork()方法的封装,主要做了以下三件事:
确定端口号,使用命令行指定的端口号或默认的,如果该端口号已被占用则prot+=1
开启子进程,该子进程独立于父进程,两者之间建立IPC通信通道进行消息传递
处理通信,主要监听了RESTART重启和UPDATE_PORT更新端口号事件
接下来看一下在子进程中运行的forkedDev.ts都做了什么。
//packages/umi/src/forkedDev.ts(async()=>{ try{ //1、设置NODE_ENV为developmentprocess.env.NODE_ENV='development';//2、InitwebpackversiondeterminationandrequirehookinitWebpack();//3、实例化Service类,执行run方法constservice=newService({ cwd:getCwd(),//umi项目的根路径pkg:getPkg(process.cwd()),//项目的package.json文件的路径});awaitservice.run({ name:'dev',args,});//4、父子进程通信letclosed=false;process.once('SIGINT',()=>onSignal('SIGINT'));process.once('SIGQUIT',()=>onSignal('SIGQUIT'));process.once('SIGTERM',()=>onSignal('SIGTERM'));functiononSignal(signal:string){ if(closed)return;closed=true;//退出时触发插件中的onExit事件service.applyPlugins({ key:'onExit',type:service.ApplyPluginsType.event,args:{ signal,},});process.exit(0);}}catch(e:any){ process.exit(1);}})();设置process.env.NODE_ENV的值
initWebpack(接下来解析)
实例化Service并run(第二part的内容)
处理父子进程通信,当父进程监听到SIGINT、SIGTERM等终止进程的信号,也通知到子进程进行终止;子进程退出时触发插件中的onExit事件
initWebpack
//packages/umi/src/initWebpack.tsconsthaveWebpack5=(configContent.includes('webpack5:')&&!configContent.includes('//webpack5:')&&!configContent.includes('//webpack5:'))||(configContent.includes('mfsu:')&&!configContent.includes('//mfsu:')&&!configContent.includes('//mfsu:'));if(haveWebpack5||process.env.USE_WEBPACK_5){ process.env.USE_WEBPACK_5='1';init(true);}else{ init();}initRequreHook();这一步功能是检查用户配置确定初始化webpack的版本。读取默认配置文件.umirc和config/config中的配置,如果其中有webpack5或?mfsu等相关配置,umi就会使用webpack5进行初始化,否则就使用webpack4进行初始化。这里的mfsu是webpack5的模块联邦相关配置,umi在3.5版本时已经进行了支持。
初遇插件化该部分在源码中的路径为:packages/core/src/Service
说起umi框架,最先让人想到的就是插件化,这也是框架的核心,该部分实现的核心源码就是Service类,接下来我们就来看看Service类的实例化和init()的过程中发生了什么,可以称之为插件化实现的开端,该部分的大致流程如下
该流程图中前四步,都是在Service类实例化的过程中完成的,接下来让我们走进Service类。
Service类的实例化//packages/core/src/Service/Service.tsexportdefaultclassServiceextendsEventEmitter{ constructor(opts:IServiceOpts){ super();this.cwd=opts.cwd||process.cwd();//当前工作目录//repoDirshouldbetherootdirofrepothis.pkg=opts.pkg||this.resolvePackage();//package.jsonthis.env=opts.env||process.env.NODE_ENV;//环境变量//在解析config之前注册babelthis.babelRegister=newBabelRegister();//通过dotenv将环境变量中的变量从.env或.env.local文件加载到process.env中this.loadEnv();//1、getuserconfigconstconfigFiles=opts.configFiles;this.configInstance=newConfig({ cwd:this.cwd,service:this,localConfig:this.env==='development',configFiles});this.userConfig=this.configInstance.getUserConfig();//2、getpathsthis.paths=getPaths({ cwd:this.cwd,config:this.userConfig!,env:this.env,});//3、getpresetsandpluginsthis.initialPresets=resolvePresets({ ...baseOpts,presets:opts.presets||[],userConfigPresets:this.userConfig.presets||[],});this.initialPlugins=resolvePlugins({ ...baseOpts,plugins:opts.plugins||[],userConfigPlugins:this.userConfig.plugins||[],});}}Service类继承自EventEmitter用于实现自定义事件。在Service类实例化的过程中除了初始化成员变量外主要做了以下三件事:
1、解析配置文件
//packages/core/src/Config/Config.tsconstDEFAULT_CONFIG_FILES=[//默认配置文件'.umirc.ts','.umirc.js','config/config.ts','config/config.js',];//...if(Array.isArray(opts.configFiles)){ //配置的优先读取this.configFiles=lodash.uniq(opts.configFiles.concat(this.configFiles));}//...getUserConfig(){ //1、找到configFiles中的第一个文件constconfigFile=this.getConfigFile();this.configFile=configFile;//潜在问题:.local和.env的配置必须有configFile才有效if(configFile){ letenvConfigFile;if(process.env.UMI_ENV){ //1.根据UMI_ENV添加后缀eg:.umirc.ts-->.umirc.cloud.tsconstenvConfigFileName=this.addAffix(configFile,process.env.UMI_ENV,);//2.去掉后缀eg:.umirc.cloud.ts-->.umirc.cloudconstfileNameWithoutExt=envConfigFileName.replace(extname(envConfigFileName),'',);//3.找到该环境下对应的配置文件eg:.umirc.cloud.[ts|tsx|js|jsx]envConfigFile=getFile({ base:this.cwd,fileNameWithoutExt,type:'javascript',})?.filename;}constfiles=[configFile,//eg:.umirc.tsenvConfigFile,//eg:.umirc.cloud.tsthis.localConfig&&this.addAffix(configFile,'local'),//eg:.umirc.local.ts].filter((f):fisstring=>!!f).map((f)=>join(this.cwd,f))//转为绝对路径.filter((f)=>existsSync(f));//clearrequirecacheandsetbabelregisterconstrequireDeps=files.reduce((memo:string[],file)=>{ memo=memo.concat(parseRequireDeps(file));//递归解析依赖returnmemo;},[]);//删除对象中的键值require.cache[cachePath],下一次require将重新加载模块requireDeps.forEach(cleanRequireCache);this.service.babelRegister.setOnlyMap({ key:'config',value:requireDeps,});//requireconfigandmergereturnthis.mergeConfig(...this.requireConfigs(files));}else{ return{ };}}细品源码,可以看出umi读取配置文件的优先级:自定义配置文件?>.umirc>config/config,后续根据UMI_ENV尝试获取对应的配置文件,development模式下还会使用local配置,不同环境下的配置文件也是有优先级的
例如:.umirc.local.ts>.umirc.cloud.ts>.umirc.ts
由于配置文件中可能require其他配置,这里通过parseRequireDeps方法进行递归处理。在解析出所有的配置文件后,会通过cleanRequireCache方法清除requeire缓存,这样可以保证在接下来合并配置时的引入是实时的。
2、获取相关绝对路径
//packages/core/src/Service/getPaths.tsexportdefaultfunctiongetServicePaths({ cwd,config,env,}:{ cwd:string;config:any;env?:string;}):IServicePaths{ letabsSrcPath=cwd;if(isDirectoryAndExist(join(cwd,'src'))){ absSrcPath=join(cwd,'src');}constabsPagesPath=config.singular?join(absSrcPath,'page'):join(absSrcPath,'pages');consttmpDir=['.umi',env!=='development'&&env].filter(Boolean).join('-');returnnormalizeWithWinPath({ cwd,absNodeModulesPath:join(cwd,'node_modules'),absOutputPath:join(cwd,config.outputPath||'./dist'),absSrcPath,//srcabsPagesPath,//pagesabsTmpPath:join(absSrcPath,tmpDir),});}这一步主要获取项目目录结构中node_modules、dist、src、pages等文件夹的绝对路径。如果用户在配置文件中配置了singular为true,那么页面文件夹路径就是src/page,默认是src/pages
3、收集preset和plugin以对象形式描述
在umi中“万物皆插件”,preset是对于插件的描述,可以理解为“插件集”,是为了方便对插件的管理。例如:@umijs/preset-react就是一个针对react应用的插件集,其中包括了plugin-access权限管理、plugin-antdantdUI组件等。
//packages/core/src/Service/Service.tsthis.initialPresets=resolvePresets({ ...baseOpts,presets:opts.presets||[],userConfigPresets:this.userConfig.presets||[],});this.initialPlugins=resolvePlugins({ ...baseOpts,plugins:opts.plugins||[],userConfigPlugins:this.userConfig.plugins||[],});在收集preset和plugin时,首先调用了resolvePresets方法,其中做了以下处理:
3.1、调用getPluginsOrPresets方法,进一步收集preset和plugin并合并
//packages/core/src/Service/utils/pluginUtils.tsgetPluginsOrPresets(type:PluginType,opts:IOpts):string[]{ constupperCaseType=type.toUpperCase();return[//opts...((opts[type===PluginType.preset?'presets':'plugins']asany)||[]),//env...(process.env[`UMI_${ upperCaseType}S`]||'').split(',').filter(Boolean),//dependencies...Object.keys(opts.pkg.devDependencies||{ }).concat(Object.keys(opts.pkg.dependencies||{ })).filter(isPluginOrPreset.bind(null,type)),//userconfig...((opts[type===PluginType.preset?'userConfigPresets':'userConfigPlugins']asany)||[]),].map((path)=>{ returnresolve.sync(path,{ basedir:opts.cwd,extensions:['.js','.ts'],});});}这里可以看出收集preset和plugin的来源主要有四个:
实例化Service时的入参
process.env中指定的UMI_PRESETS或UMI_PLUGINS
package.json中dependencies和devDependencies配置的,需要命名规则符合?/^(@umijs\/|umi-)preset-/这个正则
解析配置文件中的,即入参中的userConfigPresets或userConfigPresets
3.2、调用pathToObj方法:将收集的plugin或preset以对象的形式输出
//输入umidev经yargs-parser解析后为://args={ //_:["dev"],//}0umi官网中提到过:每个插件都会对应一个id和一个key,id是路径的简写,key是进一步简化后用于配置的唯一值。便是在这一步进行的处理
形式如下:
//输入umidev经yargs-parser解析后为://args={ //_:["dev"],//}1思考:为什么要将插件以对象的形式进行描述?有什么好处?
执行run方法,初始化插件在Service类实例化完毕后,会立马调用run方法,run()执行的第一步就是执行init方法,init()方法的功能就是完成插件的初始化,主要操作如下:
遍历initialPresets并init
合并initpresets过程中得到的plugin和initialPlugins
遍历合并后的plugins并init
这里的initialPresets和initialPlugins就是上一步收集preset和plugin得到的结果,在这一步要对其逐一的init,接下来我们看一下init的过程中做了什么。
Initplugin
//输入umidev经yargs-parser解析后为://args={ //_:["dev"],//}2这段代码主要做了以下几件事情:
getPluginAPI方法:newPluginAPI时传入了Service实例,通过pluginAPI实例中的registerMethod方法将register方法添加到Service实例的pluginMethods中,后续返回pluginAPI的代理,以动态获取最新的register方法,以实现边注册边使用。
//输入umidev经yargs-parser解析后为:/