欢迎来到皮皮网官网

【detr源码解析】【理财投资系统源码】【比特币 源码 山寨】sift源码分析

时间:2024-11-15 06:13:21 来源:买进卖出指标源码

1.求在autojs中使用opencv的源码SIFT特征匹配例子
2.SIFT算法原理与源码分析
3.(四十三)特征点检测-LBP
4.SURF、SIFT 特征检测

sift源码分析

求在autojs中使用opencv的分析SIFT特征匹配例子

       // 导入OpenCV模块

       var cv = require("opencv");

       // 读取图像

       var img1 = cv.imread("/sdcard/img1.jpg");

       var img2 = cv.imread("/sdcard/img2.jpg");

       // 创建SIFT检测器对象

       var sift = new cv.FeatureDetector("SIFT");

       // 检测图像中的关键点和描述符

       var keypoints1 = sift.detect(img1);

       var keypoints2 = sift.detect(img2);

       var descriptors1 = sift.compute(img1, keypoints1);

       var descriptors2 = sift.compute(img2, keypoints2);

       // 创建FLANN匹配器对象

       var matcher = new cv.Matcher("FlannBased");

       // 对两幅图像中的关键点进行匹配

       var matches = matcher.match(descriptors1, descriptors2);

       // 筛选出最优的匹配结果

       var bestMatches = matcher.filterMatches(matches, 0.);

       // 在两幅图像中绘制匹配结果

       var output = new cv.Mat();

       cv.drawMatches(img1, keypoints1, img2, keypoints2, bestMatches, output);

       // 保存匹配结果图像

       cv.imwrite("/sdcard/matches.jpg", output);

       以上代码中,我们使用了AutoJS的源码require()函数导入OpenCV模块,并使用cv.imread()函数读取了两幅图像。分析然后,源码我们创建了一个SIFT检测器对象,分析detr源码解析并使用它检测了两幅图像中的源码关键点和描述符。接着,分析我们创建了一个FLANN匹配器对象,源码并使用它对两幅图像中的分析关键点进行了匹配。最后,源码我们筛选出了最优的分析匹配结果,并使用cv.drawMatches()函数在两幅图像中绘制了匹配结果,源码并将结果保存到了本地。分析

SIFT算法原理与源码分析

       SIFT算法的源码精密解析:关键步骤与核心原理

       1. 准备阶段:特征提取与描述符生成

       在SIFT算法中,首先对box.png和box_in_scene.png两张图像进行关键点检测。利用Python的理财投资系统源码pysift库,通过一系列精细步骤,我们从灰度图像中提取出关键点,并生成稳定的描述符,以确保在不同尺度和角度下依然具有较高的匹配性。

       2. 高斯金字塔构建

       计算基础图像的高斯模糊,sigma值选择1.6,先放大2倍,确保模糊程度适中。

       通过连续应用高斯滤波,构建高斯金字塔,每层图像由模糊和下采样组合而成,每组octave包含5张图像,从底层开始,逐渐减小尺度。

       3. 极值点检测与极值点定位

       在高斯差分金字塔中寻找潜在的兴趣点,利用邻域定义,比特币 源码 山寨选择尺度空间中的极值点,这些点具有旋转不变性和稳定性。

       使用quadratic fit细化极值点位置,确保匹配点的精度。

       4. 特征描述与方向计算

       从细化的位置计算关键点方向,通过梯度方向和大小统计直方图,确定主次方向,以增强描述符的旋转不变性。

       通过描述符生成过程,旋转图像以匹配关键点梯度与x轴,划分x格子并加权叠加,生成维的SIFT特征描述符。

       5. 精度校验与匹配处理

       利用FLANN进行k近邻搜索,执行Lowe's ratio test筛选匹配点,确保足够的匹配数。

       执行RANSAC方法估计模板与场景之间的php社交系统源码homography,实现3D视角变化适应。

       在场景图像上标注检测到的模板并标识SIFT匹配点。

       SIFT的独特性:它提供了尺度不变、角度不变以及在一定程度上抵抗3D视角变化的特征,是计算机视觉领域中重要的特征检测和描述算法。

(四十三)特征点检测-LBP

       时间为友,记录点滴。

       特征点检测领域并非只有一种算法,大神们总能带来新颖的想法。虽然不可能掌握所有算法,但有些思路是值得借鉴的。

       比如SIFT就是一个宝库,总能给我们带来启发。

       既然已经了解了Harris、SIFT、FAST等特征检测算法,云豹视频社交源码以及特征点的定义和评判标准,那么我们就来探讨LBP如何在特征检测领域脱颖而出。

       思考一下特征点的优良性质:

       什么是LBP?

       LBP(Local Binary Pattern,局部二值模式)是一种描述图像局部纹理特征的算子,它具有旋转不变性和灰度不变性等显著优点。由T. Ojala、M. Pietikäinen和D. Harwood在年提出,用于纹理特征提取。它提取的是图像的局部纹理特征;

       它是如何实现的?

       首先谈谈原始LBP算子:

       通过比较3*3邻域内的8个点,可以得到8位二进制数(通常转换为十进制数即LBP码,共种,即2 Byte),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。

       虽然简单,但略显简陋(是不是与FAST算子有些类似)。这个LBP算子显然不能表示优良特征点,还好它出现的早(),所以后人对LBP做了很多优化,使其满足尺度不变、旋转不变、光照不变。

       尺度不变:

       无论是SIFT还是ORB,要做到尺度不变,我们通常采用金字塔扩展到多尺度空间,但LBP有它独特的方法。

       在原始的LBP中,我们选择的是以目标点为中心,3x3的8邻域,经历过FAST的我们很容易想到半径的概念。那么3x3代表的就是以目标点为圆心,半径为1的邻域,如果我们把半径扩展一下会怎么样呢?

       Ojala等人对LBP算子进行了改进,将3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的LBP算子允许在半径为R的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;

       这种情况下,对应黑点像素可能不是整数,要得到该点准确的像素值,必须对该点进行插值计算才能得到该点像素值,常见的插值方式为双线性插值或者立方插值。

       这种思路有点像“山不转,水转;水不转,人转”;

       旋转不变性:

       Maenpaa等人又将LBP算子进行了扩展,提出了具有旋转不变性的LBP算子,即不断旋转圆形邻域得到一系列初始定义的LBP值,取其最小值作为该邻域的LBP值。

       举一个具体的例子:下图所示的8种LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的LBP值为。也就是说,图中的8种LBP模式对应的旋转不变的LBP模式都是。

       光照不变:

       从LBP的差值计算可以看出,LBP本身就具有光照不变的特性(灰度值按比例缩放,强者恒强),但是我们可以引入权重概念,计算LBP码和对比度。

       好了,LBP就这么多。是不是感觉SIFT/ORB后什么都简单了些?

       在网上搜了个Python实现的LBP,实验了下,贴在这里:

       Python

       惯例,OpenCV早就给我们提供了LBP的算子,而且可以结合FaceDetect来用,

       C++

       1、lbpcascade_frontalface_improved文件我使用的是我们自己编译出来的,在Binfile\install\etc\lbpcascades目录下(你可以用everything搜索一下,OpenCV源码中也有提供) 2、今天我们首次使用了CascadeClassifier,这个我觉得有必要在后面详细解释一下。用OpenCV做人脸检测简直简单得不要不要的。

SURF、SIFT 特征检测

       介绍:SURF特征检测是一种尺度不变特征检测技术,它能够在不同尺度下检测到一致的物体关键点,并且每个检测到的特征点都关联一个尺度因子。理想状态下,两个尺度因子之间的比值应当与图像尺度的比值相同。SURF特征的全称是加速稳健特征(Speeded Up Robust Feature),它不仅实现了尺度不变性,还具备高效计算的特点。

       实现原理:

       例子代码:

       效果图

       2. SIFT特征检测

       实现原理:

       例子代码:

       效果图

       欢迎关注我的微信公众号“OpenCV图像处理算法”,主要分享我在学习图像处理算法过程中的心得,内容涵盖特征提取、目标跟踪、定位、机器学习和深度学习等领域。每个案例都会附上源码和相关资料,期待与同行交流,共同进步。

copyright © 2016 powered by 皮皮网   sitemap