1.深入剖析Zookeeper原理(五)ZK核心源码剖析
2.源码解析kafka删除topic
3.zookeeper开山篇-编译安装与zk基础命令使用
4.zookeeper是码详什么?
5.Zookeeper源码集群启动
深入剖析Zookeeper原理(五)ZK核心源码剖析
ZooKeeper内部维护了三种选举算法:LeaderElection, FastLeaderElection和AuthLeaderElection。FastLeaderElection与AuthLeaderElection的码详实现类似,关键差别在于AuthLeaderElection加入了认证信息,码详但已被ZooKeeper淘汰。码详FastLeaderElection相较于LeaderElection更加高效,码详已在3.4.0版本后不被推荐使用。码详dva 源码当前版本仅保留FastLeaderElection选举算法。码详
接下来,码详将深入探讨FastLeaderElection选举算法的码详具体实现。此算法在ZooKeeper中通过高效的码详机制确定领导者角色,以保证集群的码详稳定性和高效性。
深入分析FastLeaderElection算法源码,码详理解其实现机制,码详有助于我们更好地掌握ZooKeeper的码详核心原理。代码逻辑清晰,码详通过分布式共识算法,确保了选举过程的公平性和正确性。
为了实现高效的选举过程,FastLeaderElection引入了一系列优化。这些优化包括但不限于,通过优化算法减少选举过程中的通信开销,以及通过改进数据结构提高选举过程的执行效率。
在实现过程中,FastLeaderElection核心接口被精心设计,确保了选举算法的可扩展性和灵活性。这些接口不仅支持基本的选举功能,还提供了丰富的异常处理机制,以应对各种异常情况。
此外,java源码与解释ZooKeeper的持久化机制是其稳定性的重要保障。ZooKeeper通过事务日志实现持久化处理,确保了数据的一致性和可靠性。日志记录了所有对集群状态的修改操作,使得数据恢复和故障恢复成为可能。
在ZooKeeper中,Watcher机制的实现是其核心功能之一。Watcher用于通知客户端关于节点状态的变更,以实现实时数据同步。ZooKeeper内部的Watcher管理器(ZKWatchManager)和watch注册类(如ExistWatchRegistration、DataWatchRegistration、ChildWatchRegistration等)共同实现了这一机制。
这些注册类分别对应了不同的watch类型,允许客户端根据需求订阅不同的事件。例如,ExistWatchRegistration用于监听节点是否存在,DataWatchRegistration用于监听节点数据的变化,而ChildWatchRegistration用于监听子节点的变更。
通过这些watch注册类,客户端能够实时接收来自ZooKeeper集群的事件通知,从而实现实时的数据同步和状态感知。同时,ZooKeeper通过Watcher机制实现了对节点状态的高效监控,确保了数据的一致性和集群的稳定性。
最后,ZooKeeper的网络通信实现是其对外提供服务的基础。通过优化的网络通信协议,ZooKeeper能够高效地在分布式环境中进行数据交换和状态同步。uboot源码ftp镜像这一部分的实现涉及到多种通信机制,如TCP协议、数据编码、消息格式等,确保了数据传输的可靠性和性能。
总结,ZooKeeper通过精心设计的选举算法、持久化机制、Watcher机制和网络通信实现,提供了一套高效、稳定和可靠的服务框架。深入理解这些核心原理和实现细节,有助于我们更好地运用ZooKeeper在分布式系统中解决实际问题。
源码解析kafka删除topic
本文以kafka0.8.2.2为例,解析如何删除一个topic以及其背后的关键技术和源码实现过程。
删除一个topic涉及两个关键点:配置删除参数以及执行删除操作。
首先,配置参数`delete.topic.enable`为`True`,这是Broker级别的配置,用于指示kafka是否允许执行topic删除操作。
其次,执行命令`bin/kafka-topics.sh --zookeeper zk_host:port/chroot --delete --topic my_topic_name`,此命令指示kafka删除指定的topic。
若未配置`delete.topic.enable`为`True`,topic仅被标记为删除状态,而非立即清除。此时,通常的c socket tcp源码做法是手动删除Zookeeper中的topic信息和日志,但这仅会清除Zookeeper的数据,并不会真正清除kafkaBroker内存中的topic数据。因此,最佳做法是配置`delete.topic.enable`为`True`,然后重启kafka。
接下来,我们介绍几个关键类和它们在删除topic过程中的作用。
1. **PartitionStateMachine**:该类代表分区的状态机,决定分区的当前状态及其转移。状态包括:NonExistentPartition、NewPartition、OnlinePartition、OfflinePartition。
2. **ReplicaManager**:负责管理当前机器的所有副本,处理读写、删除等具体操作。读写操作流程包括获取partition对象,再获取Replica对象,接着获取Log对象,并通过其管理的Segment对象将数据写入、读出。
3. **ReplicaStateMachine**:副本的状态机,决定副本的当前状态和状态之间的转移。状态包括:NewReplica、OnlineReplica、OfflineReplica、ReplicaDeletionStarted、ReplicaDeletionSuccessful、html5404源码ReplicaDeletionIneligible、NonExistentReplica。
4. **TopicDeletionManager**:管理topic删除的状态机,包括发布删除命令、监听并开始删除topic、以及执行删除操作。
在删除topic的过程中,分为四个阶段:客户端执行删除命令、未配置`delete.topic.enable`的流水、配置了`delete.topic.enable`的流水、以及手动删除Zookeeper上topic信息和磁盘数据。
客户端执行删除命令时,会在"/admin/delete_topics"目录下创建topicName节点。
未配置`delete.topic.enable`时,topic删除流程涉及监听topic删除命令、判断`delete.topic.enable`状态、标记topic为不可删除、以及队列删除topic任务。
配置了`delete.topic.enable`时,额外步骤包括停止删除topic、检查特定条件、更新删除topic集合、激活删除线程、执行删除操作,如解除分区变动监听、清除内存数据结构、删除副本数据、删除Zookeeper节点信息等。
关于手动删除Zookeeper上topic信息和磁盘数据,通常做法是删除Zookeeper的topic相关信息及磁盘数据,但这可能导致部分内存数据未清除。是否会有隐患,需要进一步测试。
总结而言,kafka的topic删除流程基于Zookeeper实现,通过配置参数、执行命令、管理状态机以及清理相关数据,以实现topic的有序删除。正确配置`delete.topic.enable`并执行删除操作是确保topic完全清除的关键步骤。
zookeeper开山篇-编译安装与zk基础命令使用
随着软件规模的扩张,分布式服务逐渐成为解决并发流量问题的主流选择,Apache的Zookeeper作为一款成熟的分布式协调组件,为分布式应用提供一致性服务。本文将带你步入Zookeeper的学习之旅,从基础安装和命令使用开始。
Zookeeper是Apache的一个分布式应用程序协调服务,它扮演着配置管理、域名服务、分布式同步和组服务等角色,是Hadoop和Hbase的重要组成部分。它的主要作用是保证分布式系统中的数据一致性。
下载安装步骤有两个:首先,可从官网(mirrors.tuna.tsinghua.edu.cn...)下载最新版本的zookeeper-xxx.tar.gz,解压后将conf目录下的zoo_sample.cfg复制并重命名为zoo.cfg,配置dataDir和dataLogDir,然后双击bin目录下的zkServer.cmd启动服务。
另一种方法是下载zk源码,通过Ant进行编译。首先,根据开发环境和zk源码版本下载Ant,配置环境变量,然后在GitHub上选择相应的版本进行git下载。编译时需注意zk源码中的properties-maven-plugin和exec-maven-plugin插件配置,可能需要手动修改以适应本地环境。
启动单机版zk服务时,可能会遇到编译错误,需检查pom.xml文件和git.properties配置。成功编译后,通过zkCli.cmd客户端连接,通过ls、create、get、stat、delete等命令操作zk节点,实现基本的创建、读取、修改和删除功能。
本文仅是Zookeeper学习的入门,后续还将深入探讨更多命令和配置细节,欢迎持续关注。作者:享学课堂online,来源:今日头条。
zookeeper是什么?
zookeeper是动物管理员的意思。 ZooKeeper是一个分布式的,开放源码租前慎的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。 ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。 ZooKeeper包含一个简单的原语集,提供Java和C的接口。 ZooKeeper代码版本中,提供了分布式独享锁、选举、队列的接口,代码在$zookeeper_home\src\recipes。其中分布锁和队列有Java和C两个版本,选举只有Java版本。 它的原理: ZooKeeper是以Fast Paxos算悔判法为基础的,Paxos 算法存在活锁的问题,即当有多个proposer交错提交时,有弊敬可能互相排斥导致没有一个proposer能提交成功,而Fast Paxos做了一些优化,通过选举产生一个leader (领导者),只有leader才能提交proposer,具体算法可见Fast Paxos。因此,要想弄懂ZooKeeper首先得对Fast Paxos有所了解。 ZooKeeper的基本运转流程:1、选举Leader。2、同步数据。3、选举Leader过程中算法有很多,但要达到的选举标准是一致的。4、Leader要具有最高的执行ID,类似root权限。5、集群中大多数的机器得到响应并接受选出的Leader。Zookeeper源码集群启动
Zookeeper集群启动分为两步,首先确定集群模式,然后启动集群。
在启动时,需调用org.apache.zookeeper.server.quorum.QuorumPeerMain#main方法,这是启动入口。
main方法初始化QuorumPeerMain对象,并加载配置文件。配置文件决定Zookeeper是单机模式还是集群模式。
在加载配置文件后,程序判断集群模式。在单机模式下,Zookeeper将直接启动并进入运行状态。在集群模式下,Zookeeper会进一步执行runFromConfig方法。
runFromConfig方法负责创建集群实例,确定角色分配(Leader、Follower、Observer)。每个实例独立运行,通过心跳机制保持状态同步。
Leader负责发起维护集群状态,处理写操作,将写操作广播至所有服务器。Follower直接处理读请求,将写请求转发给Leader。Observer与Follower类似,但无投票权。
在集群中,同一时间只有一个Leader,其它服务器扮演Follower或Observer角色。集群中的角色状态动态调整,确保高可用性。
通过以上步骤,Zookeeper成功启动集群,实现分布式系统中的主从复制与高可用性。