【sleuthkit源码】【style gan算法源码】【截图指标源码公式】52电影源码_电影源代码免费下载

时间:2025-01-13 21:24:01 分类:asp网站源码 翻页 来源:易语言 源码 结构

1.单片机语言include<reg52.h>是电影电影什么意思
2.-52 原码反码补码
3.C语言 52单片机,求一份TLC5615的源码源代源码,要带详细注释的码免,基础不太好,费下自己写的电影电影搜到的到没关系,在线等
4.Netty源码解析 -- FastThreadLocal与HashedWheelTimer
5.单片机语言 include<reg52.h>是源码源代sleuthkit源码什么意思

52电影源码_电影源代码免费下载

单片机语言include<reg52.h>是什么意思

       在单片机编程领域,`#include ` 这行代码具有特定含义。码免这是费下一个预处理指令,用于在实际编译前将名为 "reg.h" 的电影电影头文件包含到当前的源代码文件中。头文件 "reg.h" 针对系列的源码源代单片机,其中定义了一系列与硬件相关的码免宏、寄存器类型以及一些常用的费下函数原型。

       通过包含 "reg.h",电影电影程序员能够直接使用头文件中定义的源码源代符号,如端口地址、码免特殊功能寄存器(SFRs)等,style gan算法源码而无需在源代码中手动定义这些常量。这不仅简化了代码编写过程,也使得代码更加清晰易读。

       例如,头文件中可能会定义 `SFR P0 = 0x`,这表示P0端口的地址是0x。使用 `P0` 而不是直接的地址值,使得代码更加直观,并且易于维护。

       总结来说,`#include ` 的作用是引入与系列单片机相关的硬件定义和操作函数,让开发者能够以更高的抽象层次与单片机交互,提升编程的效率和代码的可维护性。

- 原码反码补码

       -=(最高位“1”代表符号负)

       åŽŸç =

       åç =

       è¡¥ç =

       ï¼ˆç¬¦å·ä½ä¸è¦å˜ï¼‰

C语言 单片机,求一份TLC的截图指标源码公式源码,要带详细注释的,基础不太好,自己写的搜到的到没关系,在线等

       #include <reg.h>

       #include <math.h>

       #include <intrins.h>

       #define  uint unsigned int

       #define  uchar unsigned char

       #define INBUF_LEN 6 //数据长度

       unsigned char inbuf1[INBUF_LEN]={ '0','0','0','0','0','0'};//发送缓冲区

       unsigned char code table[] = { 0xc0,0xf9,0xa4,0xb0,0x,0x,0x,0xf8,0x,0x,0x,0x,0xc6,0xa1,0x,0x8e};//共阳数码管显示0~F

       unsigned char code dis_8[]={ '0','1','2','3','4','5','6','7','8','9',' ','-'};

       sbit CS=P2^5; //定义片选信号IO口

       sbit SCLK=P2^4; //定义时钟信号IO口

       sbit DIN=P2^3; //定义数据输入IO口

       uint temp;

       void init_serialcomm( void )

       {

       SCON = 0x ; //SCON: serail mode 1, 8-bit UART, enable ucvr

       T2CON=0x;

       TH2=0x;

       TL2=0x;

       RCAP2H=0xFF;

       RCAP2L=0xDC;

       TR2=1;

       }

       //向串口发送一个字符

       void send_char_com( unsigned char ch)

       {

       SBUF=ch;

       while (TI== 0 );

       TI= 0 ;

       }

       //向串口发送一个字符串,strlen 为该字符串长度

       void send_string_com( unsigned char *str, unsigned int strlen)

       {

       unsigned int k= 0 ;

       do

       {

       send_char_com(*(str + k));

       k++;

       } while (k < strlen);

       }

       void delay(uint k)    //延时函数    

       {                         

       uint i,j;                    

       for(i=0;i<k;i++){         

       for(j=0;j<;j++)        

       { ;}}                    

       }            

       //实现DA转换

       void DAConvert(uint Data){

         uchar i;

         Data<<=6;

         CS=0;

         SCLK=0;

         for (i=0;i<;i++){

           DIN=(bit)(Data&0x);

           SCLK=1;

           Data<<=1;

           SCLK=0;

         }

         CS=1;

         SCLK=0;

         for (i=0;i<;i++);

       }

        //定时器0中断处理中键扫描和显示

       void KeyAndDis_Time0(void) interrupt 1 using 2

       {

         TH0=0xdc;

         TL0=0x;//设定时值为ms

         P0= table[ temp/];    

         P2=0x;                

         delay(2);

         P0= table[ (temp%)/];    

         P2=0x;                

         delay(2);

         P0= table[ (temp%)/];    

         P2=0x;                

         delay(2);

         P0= table[ temp%];    

         P2=0x;                

         delay(2);

       }            

       //主程序

       main(){

          uint i;

       init_serialcomm(); //初始化串口

           EA = 1;                    //允许CPU中断

           ET0 = 1;                 //定时器0中断打开

           TMOD = 0x;            //设定时器0为模式1,位模式

           TH0=0xdc;

           TL0=0x;                //设定时值为ms

           TR0 = 1;

        while(1){

       for(i=;i<;i+=2){  

       DAConvert(i);//启动转换

             temp=i;

       inbuf1[0]=dis_8[temp/];

       inbuf1[1]=dis_8[(temp%)/];

        inbuf1[2]=dis_8[(temp%)/];

        inbuf1[3]=dis_8[temp%];

       inbuf1[4]=0x0d;

         inbuf1[5]=0;

       send_string_com(inbuf1,INBUF_LEN);//串口输出到上位机

              delay(1);

             }

       for(i=;i>;i-=2){  DAConvert(i);//启动转换

             temp=i;

          inbuf1[0]=dis_8[temp/];

          inbuf1[1]=dis_8[(temp%)/];

          inbuf1[2]=dis_8[(temp%)/];

          inbuf1[3]=dis_8[temp%];

          inbuf1[4]=0x0d;

          inbuf1[5]=0;

       send_string_com(inbuf1,INBUF_LEN);

              delay(1);

             }

         }

       }

       希望对你有帮助。

Netty源码解析 -- FastThreadLocal与HashedWheelTimer

       Netty源码分析系列文章接近尾声,本文深入解析FastThreadLocal与HashedWheelTimer。基于Netty 4.1.版本。

       FastThreadLocal简介:

       FastThreadLocal与FastThreadLocalThread协同工作。FastThreadLocalThread继承自Thread类,内部封装一个InternalThreadLocalMap,该map只能用于当前线程,存放了所有FastThreadLocal对应的值。每个FastThreadLocal拥有一个index,灭庄指南源码用于定位InternalThreadLocalMap中的值。获取值时,首先检查当前线程是否为FastThreadLocalThread,如果不是,则从UnpaddedInternalThreadLocalMap.slowThreadLocalMap获取InternalThreadLocalMap,这实际上回退到使用ThreadLocal。

       FastThreadLocal获取值步骤:

       #1 获取当前线程的InternalThreadLocalMap,如果是FastThreadLocalThread则直接获取,否则通过UnpaddedInternalThreadLocalMap.slowThreadLocalMap获取。

       #2 通过每个FastThreadLocal的index,获取InternalThreadLocalMap中的值。

       #3 若找不到值,则调用initialize方法构建新对象。

       FastThreadLocal特点:

       FastThreadLocal无需使用hash算法,通过下标直接获取值,试玩平台搭建源码复杂度为log(1),性能非常高效。

       HashedWheelTimer介绍:

       HashedWheelTimer是Netty提供的时间轮调度器,用于高效管理各种延时任务。时间轮是一种批量化任务调度模型,能够充分利用线程资源。简单说,就是将任务按照时间间隔存放在环形队列中,执行线程定时执行队列中的任务。

       例如,环形队列有个格子,执行线程每秒移动一个格子,则每轮可存放1分钟内的任务。任务执行逻辑如下:给定两个任务task1(秒后执行)、task2(2分秒后执行),当前执行线程位于第6格子。那么,task1将放到+6=格,轮数为0;task2放到+6=格,轮数为2。执行线程将执行当前格子轮数为0的任务,并将其他任务轮数减1。

       HashedWheelTimer的缺点:

       时间轮调度器的时间精度受限于执行线程的移动速度。例如,每秒移动一个格子,则调度精度小于一秒的任务无法准时调用。

       HashedWheelTimer关键字段:

       添加延迟任务时,使用HashedWheelTimer#newTimeout方法,如果HashedWheelTimer未启动,则启动HashedWheelTimer。启动后,构建HashedWheelTimeout并添加到timeouts集合。

       HashedWheelTimer运行流程:

       启动后阻塞HashedWheelTimer线程,直到Worker线程启动完成。计算下一格子开始执行的时间,然后睡眠到下次格子开始执行时间。获取tick对应的格子索引,处理已到期任务,移动到下一个格子。当HashedWheelTimer停止时,取消任务并停止时间轮。

       HashedWheelTimer性能比较:

       HashedWheelTimer新增任务复杂度为O(1),优于使用堆维护任务的ScheduledExecutorService,适合处理大量任务。然而,当任务较少或无任务时,HashedWheelTimer的执行线程需要不断移动,造成性能消耗。另外,使用同一个线程调用和执行任务,某些任务执行时间过久会影响后续任务执行。为避免这种情况,可在任务中使用额外线程执行逻辑。如果任务过多,可能导致任务长期滞留在timeouts中而不能及时执行。

       本文深入剖析FastThreadLocal与HashedWheelTimer的实现细节,旨在提供全面的技术洞察与实战经验。希望对您理解Netty源码与时间轮调度器有帮助。关注微信公众号,获取更多Netty源码解析与技术分享。

单片机语言 include<reg.h>是什么意思

       在单片机编程中,`#include ` 是一个预编译指令,它的作用是将系列单片机的专用头文件 reg.h 整合到你的源代码中。当程序遇到这个指令时,编译器会从指定路径查找并插入文件reg.h的内容,使得你可以直接使用其中定义的寄存器和函数,而无需重复编写相关的地址和操作指令。

       reg.h文件实质上是一份包含了或系列单片机特定资源的函数库,比如对P0、P1、P2、P3口的特殊寄存器(如P0口特殊寄存器寻址位sfrP0),程序状态字寄存器PSW,累加器ACC,以及一系列定时器、计数器控制寄存器等的声明和操作说明。通过这个头文件,你可以方便地访问和操作这些单片机的硬件资源。

       举几个例子,sfrP0=0x说明P0口的特殊寄存器可以通过0x的地址寻址,sfrSP=0x则是堆栈指针寄存器的地址。这样,当你的代码中写入`P0.0 = 1;`这样的语句时,实际上是在对P0口的第0位寄存器进行操作。

       总之,`include ` 是为了简化对系列单片机硬件资源的访问,提高了编程效率和代码的可读性。