1.Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
2.网页源代码的底结基本结构是什么
3.深入理解 HashSet 及底层源码分析
4.UE4 LevelSequence源码剖析(一)
Linux内核源码解析---万字解析从设计模式推演per-cpu实现原理
引子
在如今的大型服务器中,NUMA架构扮演着关键角色。构源它允许系统拥有多个物理CPU,码底不同NUMA节点之间通过QPI通信。结构虽然硬件连接细节在此不作深入讨论,底结但需明白每个CPU优先访问本节点内存,构源搞定spring源码当本地内存不足时,码底可向其他节点申请。结构从传统的底结SMP架构转向NUMA架构,主要是构源为了解决随着CPU数量增多而带来的总线压力问题。
分配物理内存时,码底numa_node_id() 方法用于查询当前CPU所在的结构NUMA节点。频繁的底结内存申请操作促使Linux内核采用per-cpu实现,将CPU访问的构源变量复制到每个CPU中,以减少缓存行竞争和False Sharing,码底类似于Java中的Thread Local。
分配物理页
尽管我们不必关注底层实现,buddy system负责分配物理页,关键在于使用了numa_node_id方法。接下来,我们将深入探索整个Linux内核的per-cpu体系。
numa_node_id源码分析获取数据
在topology.h中,我们发现使用了raw_cpu_read函数,多玩图库源码传入了numa_node参数。接下来,我们来了解numa_node的定义。
在topology.h中定义了numa_node。我们继续跟踪DECLARE_PER_CPU_SECTION的定义,最终揭示numa_node是一个共享全局变量,类型为int,存储在.data..percpu段中。
在percpu-defs.h中,numa_node被放置在ELF文件的.data..percpu段中,这些段在运行阶段即为段。接下来,我们返回raw_cpu_read方法。
在percpu-defs.h中,我们继续跟进__pcpu_size_call_return方法,此方法根据per-cpu变量的大小生成回调函数。对于numa_node的int类型,最终拼接得到的是raw_cpu_read_4方法。
在percpu.h中,调用了一般的read方法。在percpu.h中,获取numa_node的源码点击保存绝对地址,并通过raw_cpu_ptr方法。
在percpu-defs.h中,我们略过验证指针的环节,追踪arch_raw_cpu_ptr方法。接下来,我们来看x架构的实现。
在percpu.h中,使用汇编获取this_cpu_off的地址,代表此CPU内存副本到".data..percpu"的偏移量。加上numa_node相对于原始内存副本的偏移量,最终通过解引用获得真正内存地址内的值。
对于其他架构,实现方式相似,通过获取自己CPU的偏移量,最终通过相对偏移得到pcp变量的地址。
放入数据
讨论Linux内核启动过程时,我们不得不关注per-cpu的值是如何被放入的。
在main.c中,我们以x实现为例进行分析。通过setup_percpu.c文件中的代码,我们将node值赋给每个CPU的numa_node地址处。具体计算方法通过early_cpu_to_node实现,种菜吧源码此处不作展开。
在percpu-defs.h中,我们来看看如何获取每个CPU的numa_node地址,最终还是通过简单的偏移获取。需要注意如何获取每个CPU的副本偏移地址。
在percpu.h中,我们发现一个关键数组__per_cpu_offset,其中保存了每个CPU副本的偏移值,通过CPU的索引来查找。
接下来,我们来设计PER CPU模块。
设计一个全面的PER CPU架构,它支持UMA或NUMA架构。我们设计了一个包含NUMA节点的结构体,内部管理所有CPU。为每个CPU创建副本,其中存储所有per-cpu变量。静态数据在编译时放入原始数据段,动态数据在运行时生成。
最后,我们回到setup_per_cpu_areas方法的分析。在setup_percpu.c中,-33的源码我们详细探讨了关键方法pcpu_embed_first_chunk。此方法管理group、unit、静态、保留、动态区域。
通过percpu.c中的关键变量__per_cpu_load和vmlinux.lds.S的链接脚本,我们了解了per-cpu加载时的地址符号。PERCPU_INPUT宏定义了静态原始数据的起始和结束符号。
接下来,我们关注如何分配per-cpu元数据信息pcpu_alloc_info。percpu.c中的方法执行后,元数据分配如下图所示。
接着,我们分析pcpu_alloc_alloc_info的方法,完成元数据分配。
在pcpu_setup_first_chunk方法中,我们看到分配的smap和dmap在后期将通过slab再次分配。
在main.c的mm_init中,我们关注重点区域,完成map数组的slab分配。
至此,我们探讨了Linux内核中per-cpu实现的原理,从设计到源码分析,全面展现了这一关键机制在现代服务器架构中的作用。
网页源代码的基本结构是什么
如图:1.无论是动态还是静态页面都是以“<html>”开始,然后在网页最后以“</html>”结尾。
2.<head>”页头
其在<head></head>中的内容是在浏览器中内容无法显示的,这里是给服务器、浏览器、链接外部JS、a链接CSS样式等区域,而里面“<title></title>”中放置的是网页标题。
3.“<meta name="keywords" content="关键字" /> <meta name="description" content="本页描述或关键字描述" /> ”
这两个标签里的内容是给搜索引擎看的说明本页关键字及本张网页的主要内容等SEO可以用到。
4."<body></body> "
也就是常说的body区 ,这里放置的内容就可以通过浏览器呈现给用户,其内容可以是table表格布局格式内容,也可以DIV布局的内容,也可以直接是文字。这里也是最主要区域,网页的内容呈现区。
5.最后是以"</html> "结尾,也就是网页闭合。
以上是一个完整的最简单的html语言基本结构,通过以上可以再增加更多的样式和内容充实网页。
扩展资料:
标签详解:
1.<!doctype>:是声明用哪个 HTML 版本进行编写的指令。并不是 HTML 标签。<!doctype html>:html5网页声明,表示网页采用html5。
2.<meta>:提供有关页面的元信息(针对搜索引擎和更新频度的描述和关键词等),写在<head>标签内。
a)<meta charset="UTF-8">:设置页面的编码格式UTF-8;
b)<meta name="Generator" content="EditPlus">:说明生成工具为EditPlus;
c)<meta name="Author" content="">:告诉搜索引擎站点制作的作者;
d)<meta name="Keywords" content="">:告诉搜索引擎网站的关键字;
e)<meta name="Description" content="">:告诉搜索引擎网站的内容;
参考资料:
深入理解 HashSet 及底层源码分析
HashSet,作为Java.util包中的核心类,其本质是基于HashMap的实现,主要特性是存储不重复的对象。通过理解HashMap,学习HashSet相对简单。本文将对HashSet的底层结构和重要方法进行剖析。1. HashSet简介
HashSet是Set接口的一个实现,经常出现在面试中。它的核心是HashMap,通过构造函数可以观察到这一关系。Set接口还有另一个实现——TreeSet,但HashSet更常用。2. 底层结构与特性
HashSet的特性主要体现在其不允许重复元素和无序性上。由于HashMap的key不可重复,所以HashSet的元素也是独一无二的。同时,由于HashMap的key存储方式,HashSet内部的数据没有特定的顺序。3. 重要方法分析
构造方法: HashSet利用HashMap的构造,确保元素的唯一性。
添加方法: 添加元素时,实际上是将元素作为HashMap的key,删除时若返回true,则表示之前存在该元素。
删除方法: 删除操作在HashMap中完成,返回值表示元素是否存在。
iterator()方法: 通过获取Map的keySet来实现迭代。
size()方法: 直接调用HashMap的size方法获取元素数量。
总结
HashSet的底层源码精简,主要依赖HashMap。它通过HashMap的特性确保元素的唯一性和无序性。了解了这些,对于使用和理解HashSet将大有裨益。如有疑问,欢迎留言交流。UE4 LevelSequence源码剖析(一)
UE4的LevelSequence源码解析系列将分四部分探讨,本篇聚焦Runtime部分。Runtime代码主要位于UnrealEngine\Engine\Source\Runtime\MovieScene目录,结构上主要包括Channels、Evaluation、Sections和Tracks等核心模块。
ALevelSequenceActor是Runtime的核心,负责逐帧更新,它包含UMovieSceneSequence和ULevelSequencePlayer。ALevelSequenceActor独立于GameThread更新,并且在Actor和ActorComponent更新之前,确保其在RuntTickGroup之前执行。
IMovieScenePlaybackClient的关键接口用于绑定,编辑器通过IMovieSceneBindingOwnerInterface提供直观的蓝图绑定机制。UMovieSceneSequence是LevelSequence资源实例,它支持SpawnableObject和PossessableObject,便于控制对象的拥有和分离。
ULevelSequencePlayer作为播放控制器,由ALevelSequenceActor的Tick更新,具有指定对象在World和Sublevel中的功能,还包含用于时间控制的FMovieSceneTimeController。UMovieSceneTrack作为底层架构,由UMovieSceneSections组成,每个Section封装了Section的帧范围和对应Channel的数据。
序列的Eval过程涉及EvalTemplate和ExecutionTokens,它们协同工作模拟Track。FMovieSceneEvaluationTemplate定义了Track的模拟行为,而ExecutionTokens则是模拟过程中的最小单元。真正的模拟操作在FMovieSceneExecutionTokens的Apply函数中执行,通过BlendingAccumulator进行结果融合。
自定义UMovieSceneTrack需要定义自己的EvaluationTemplate,这部分将在编辑器拓展部分详细讲解。序列的Runtime部分展示了如何在GameThread中高效管理和模拟场景变化,为后续的解析奠定了基础。