1.Matlab DWT与SVD数字水印【解析 参考源码】
2.python+opencv实现/短视频一键去水印
Matlab DWT与SVD数字水印【解析 参考源码】
Matlab中的电脑电脑DWT(离散小波变换)与SVD(奇异值分解)在数字水印技术中扮演着关键角色。它们基于变换域的水印水印特性,提供了一种稳健的源码源码水印嵌入和提取策略。DCT(离散余弦变换)利用图像高频信息的电脑电脑集中性,而SVD的水印水印稳定性则确保了水印在图像扰动时的可靠性。在水印嵌入过程中,源码源码anycad源码分析首先对图像进行DCT变换,电脑电脑然后选择SVD分解来处理变换后的水印水印系数,将水印信息巧妙地嵌入到奇异值矩阵中。源码源码这种策略对几何攻击具有一定的电脑电脑抵抗能力,且不影响图像视觉质量。水印水印
对于实际应用,源码源码如图像打印和扫描后的电脑电脑虚伪币投资源码水印提取,SVD嵌入的水印水印水印算法尤其重要,因为它能应对印刷过程中的源码源码模拟-数字转换和设备扭曲。然而,传统SVD水印需要原始图像,存在传输安全风险。本文的改进算法则在嵌入阶段避免了使用原图的SVD结果,降低了对原始数据的依赖,提高了效率。水印的嵌入步骤包括选取图像、分离绿色通道、DCT和SVD处理,接着将水印灰度化并嵌入到SVD的解释型语言源码提取奇异值中,最后通过量化形成带水印的图像。
而在水印提取时,即使面对打印扫描攻击后的图像,通过读取图像、DCT变换和SVD分解,可以计算并提取出嵌入的水印信息。这种策略兼顾了水印的鲁棒性和透明性,是数字水印技术的重要组成部分。
python+opencv实现/短视频一键去水印
在制作ppt个人文章或者分享过程中,经常会遇到一些带有水印的情况,不少人都希望能够去除这些水印,提高和视频的能用的码支付源码观看体验。本文将介绍如何使用Python+opencv实现的去水印功能。
首先,我们需要导入OpenCV和NumPy库。OpenCV是一个开源的计算机视觉库,可以用于图像和视频处理,NumPy是Python的一个科学计算库,提供了高性能的多维数组对象。
在代码中,我们定义了一个变量pmode来指定处理模式,可以是"image"或"video"。当pmode为"image"时,我们从指定路径读取一张;当pmode为"video"时,量化策略选股源码我们通过cv2.VideoCapture()函数从指定路径读取一个视频。
接下来,我们获取的高度和宽度,并定义了一些全局变量,用于记录鼠标事件的状态和坐标。同时,我们创建了一个与窗口绑定的回调函数,用于实现鼠标事件的交互操作。
在鼠标回调函数中,我们根据不同的鼠标事件进行相应的操作。当按下鼠标左键时,开始画矩形或圆形,记录起始坐标;当鼠标移动时,如果继续按下鼠标左键,根据当前模式画矩形或圆形;当释放鼠标左键时,停止画矩形或圆形,根据当前模式完成最后一个矩形或圆形的绘制。
接下来,我们定义了一个waterprint()函数,用于去除中的水印。在该函数中,我们首先定义了要查找的颜色范围,然后将转换为HSV颜色空间,并使用cv2.inRange()函数根据颜色范围得到一个二值图像。接着,我们使用cv2.dilate()函数对二值图像进行膨胀操作,得到一张掩膜图像。最后,我们使用cv2.inpaint()函数根据掩膜图像进行修复操作,得到最终的去水印结果。
在处理视频时,我们首先创建了一个视频编写器,并使用cv2.VideoWriter()函数指定输出视频的格式、帧率和大小。然后,我们使用cv2.VideoCapture()函数读取视频的每一帧,并对每一帧进行去水印操作。最后,我们将处理后的帧写入输出视频,并显示处理后的帧。如果按下键盘上的"s"键,则停止处理并保存输出视频。最后,我们释放资源,关闭窗口。
当处理的是一张,则直接调用waterprint()函数进行去水印,并显示处理后的。
通过以上代码,我们实现了和视频的去水印功能。运行代码并选择相应的处理模式后,可以通过鼠标交互操作选择要去除的水印区域,并得到去水印后的结果。这样,我们就可以更好地欣赏和观看视频,提高视觉体验。
总结起来,本文介绍了如何使用Python编程语言实现和视频的去水印功能。通过OpenCV和NumPy库的支持,我们可以轻松处理图像和视频,并实现自定义的图像处理效果。希望本文对大家了解Python图像处理有所帮助。
点击获取源码:
python+opencv实现/短视频一键去水印