1.vue3源码学习--调试环境搭建
2.10分钟快速精通rollup.js——Vue.js源码打包原理深度分析
3.Vue Router 源码学习笔记5 - 视图更新的码自实现
4.学习vue源码(18)三探生命周期之初始化provide与inject
5.vue3源码学习--编译阶段汇总
6.每天学点Vue源码: 关于vm.$watch()内部原理
vue3源码学习--调试环境搭建
Vue3源码调试环境搭建指南
要深入学习Vue3源码,首先需要在本地搭建一个调试环境。码自以下是码自详细的步骤: 1. 克隆项目: 从GitHub上获取官方或你感兴趣的Vue3项目,通常可通过以下命令进行克隆: <pre>git clone /vuejs/vue3</pre> 2. 安装依赖: 项目克隆后,码自执行安装命令以确保所有必要的码自构建工具和依赖已准备就绪: <pre>cd vue3-projectnpm install
yarn install (如果项目使用yarn)</pre>
3. 运行项目: 安装完成后,运行项目以验证是码自html喜帖源码否可以正常启动: <pre>npm run serve 或 yarn serve</pre> 4. 调试模式: 要进行源码级别的调试,你需要配置开发环境,码自开启调试工具如Chrome DevTools或Vue Devtools: <pre>在浏览器中访问piler-core包的码自源码,完成了编译阶段的码自解析(忽略了compiler-ssr部分)。 涉及的码自包包括:vue-loader:基于webpack的入口
vueLoaderPlugin:处理核心操作
@vue/compiler-sfc:处理script、template和style
compiler-dom:处理template,码自与compiler-core协同工作
compiler-core:处理template的码自核心部分
vue-loader首先安装vueLoaderPlugin,主要负责匹配资源并调用相应方法。码自script部分通过@vue/compiler-sfc的码自compileScript处理,其他如template和style则根据其类型调用相应处理函数。码自 编译流程中,script通过babel将JavaScript转换为AST节点,然后进行处理。template则通过compiler-dom和compiler-core转换为浏览器可识别的JavaScript代码。CSS变量和scopeId也是在这个阶段进行处理的。 在dev模式下,render function会被分离出来以支持热模块替换(HMR),而prod模式下,投资任务源码这些代码会被整合到setup函数中,以提高代码效率。 最后,总结整个编译阶段,对Vue源码有了深入理解,不再是神秘的魔法,而是清晰的流程。希望这些内容对您有所帮助,祝大家新春快乐!每天学点Vue源码: 关于vm.$watch()内部原理
深入探讨Vue源码,解析vm.$watch()的内部原理,让我们从整体结构入手。使用vm.$watch()时,首先数据属性被整个对象a进行观察,这个过程产生一个名为ob的Observe实例。在该实例中,存在dep,它代表依赖关系,而依赖关系在Observe实例内部进行存储。接下来,我们聚焦于内部实现细节,深入理解vm.$watch()在源码中的聚星完整源码运作机制。
在Vue的源代码中,实现vm.$watch()功能的具体位置位于`vue/src/core/instance/state.js`文件。从这里开始,我们移步至`vue/src/core/observer/watcher.js`文件,探寻更深入的实现逻辑。此文件内,watcher.js承担了关键角色,管理着观察者和依赖关系的关联。
在深入解析源码过程中,我们发现,当使用vm.$watch()时,Vue会创建一个Watcher实例,这个实例负责监听特定属性的变化。每当被观察的属性值发生变化时,Watcher实例就会触发更新,确保视图能够相应地更新。这一过程通过依赖的管理来实现,即在Observe实例内部,依赖关系被封装并存储,确保在属性变化时能够准确地通知相关的Watcher实例。
总的来说,vm.$watch()的autojs翻译源码内部实现依赖于Vue框架的观察者模式,通过创建Observe实例和Watcher实例来实现数据变化的监听和响应。这一机制保证了Vue应用的响应式特性,使得开发者能够轻松地在数据变化时触发视图更新,从而构建动态且灵活的应用程序。
vue早期源码学习系列之四:如何实现动态数据绑定
本系列更多文章,请查阅我的博客:GitHub - youngwind/blog: 梁少峰的个人博客。或扫描下方二维码关注公众号“前端控”,欢迎交流讨论!
在前一篇中,我们学习了如何监听数据变化以及使用观察者模式和事件传递响应变化事件。今天,我们将探讨如何基于watch库实现动态数据绑定。
我们可以将问题具体化为一个例子:如何实现当user.name或user.age发生变化时,HTML上的DOM元素也能相应地改变?
最初,我采取了以下方法:在数据顶层注册一个事件,当任意属性改变时,重新遍历DOM模板,将{ { user.name}}等转换为实际值,在内存中拼接成fragment,最后将新fragment替换掉原有的DOM结构。这种方法虽然简单,但存在不少问题。调试node源码
基于上述问题,我们需要改进这种做法。为此,我们引入了Directive(指令)的概念,其构造函数和原型方法如下所示。关键实现思路是:在遍历DOM模板的过程中,当遍历到文本节点:"{ { name}}"时,先将其中的表达式"name"匹配出来,然后新建一个空的textNode,插入到这个文本节点的前面,最后移除这个文本节点。这样,就实现了用一个程序生成的textNode代替原来的textNode,从而实现每个textNode都跟它的表达式一一对应起来。
然而,这种方法仍然存在问题。为了解决这些问题,我们引入了Binding和Watcher这两个“类”。Binding用于解决键值索引,Watcher用于解决$watch。Binding、Watcher和Directive三者之间的关系如下:(此处插入)
从图中可以看出,有一个_rootBind对象,其属性是按照DOM模板中用到的数据层层深入排列下去的。在每个属性上都有一个_subs数组,这个数组表示订阅的意思,里面存放的是一系列Watcher。Watcher既可以装载Directive,也可以装载$watch。这就是vue实现动态数据绑定的三大核心概念。
学习Vue.js,我checkout的是vue的这个版本。相比于之前的学习,代码量大幅增加,从七八百行增加到差不多五千行。特别是Binding、Watcher和Directive这几个核心概念,一开始让人难以理解。经过多日的思考和不断调试,我才逐渐明白。
此外,通过Binding、Watcher、Directive构建的动态数据绑定体系还存在一个重大缺陷,我们将在下一篇文章中专门阐述。
学习vue源码(9)手写代码生成器
深入学习 vue 源码的系列文章中,我们探讨了模板编译的解析器与优化器部分。在本文中,我们将聚焦于代码生成器的实现原理与操作流程,以实现从 AST(抽象语法树)到 render 函数代码字符串的转换。
代码生成器在模板编译流程中承担着至关重要的角色,其核心任务是将由解析器和优化器处理得到的 AST 转换为可执行的 render 函数代码字符串。这一过程主要通过调用一系列预定义的函数(如 _c、_v、_s)来构建动态代码片段,从而实现模板的动态渲染。
具体而言,代码生成器依据 AST 结构,递归地生成代码片段。对于一个简单的模板,代码生成器会调用 _c 来创建元素,_v 来创建文本节点,而 _s 则用于返回字符串值。这些函数的调用构建了 render 函数的核心逻辑,实现了模板的动态渲染。
解析器负责将模板字符串转换为 AST,例如将上述简单的模板转换为对应的 AST 结构。通过调用代码生成器,可以将 AST 转换为可执行的 render 函数代码字符串。生成后的代码字符串中包含了 _c、_v、_s 等函数调用,这些函数对应着动态创建元素、文本节点以及返回字符串值的操作。
理解代码生成器的关键在于,它如何根据 AST 结构构建渲染函数代码。这一过程涉及到对 AST 中元素、文本和属性的遍历与处理,通过调用特定的生成函数(如 genData 和 genChildren)来构建数据和子节点,最终生成完整的 render 函数代码字符串。
在实现细节中,代码生成器会针对 AST 中的不同节点类型,采用不同的处理逻辑。例如,对于没有属性的节点(el.plain 为 true),代码生成器无需执行数据生成逻辑(genData),而直接跳过该步骤。这种处理方式优化了代码生成效率,确保了渲染函数代码的简洁与高效。
综上所述,代码生成器在模板编译流程中起到了关键作用,通过将 AST 转换为可执行的 render 函数代码,实现了模板的动态渲染。这一过程涉及对 AST 的递归遍历、函数调用构建以及特定逻辑的实现,构成了 vue 模板编译的核心机制。深入理解代码生成器的实现原理有助于开发者更好地掌握 vue 模板编译的底层机制,为开发高质量、高效的应用打下坚实的基础。
vue-router源码学习 - install与<router-view>
本文深入解析Vue-router的install过程和部分逻辑。首先,探讨Vue-router的注册机制,即Vue.use(VueRouter)时的执行关键代码。利用Vue.mixin功能,混入beforeCreate钩子,确保所有组件在初始化阶段定义好_router和_routerRoot。this.$options展示组件构造时传递的选项信息。根组件执行beforeCreate时,_routerRoot指向根组件,而非根组件的执行则不同。全局混入后,定义$router和$route变量,并注册两个组件。
接下来,聚焦渲染流程的核心。主要负责渲染匹配到的路由组件。上篇中介绍的嵌套路由机制在匹配RouteRecord后,使用Route,其matched字段包含匹配的RouteRecord及其所有祖先RouteRecord。多个层级的页面中,每个router-view需知道自己的层级,通过源码内容实现。每个router-view标记自身,便于确定层级,在找到对应层级组件后进行渲染。
至此,渲染过程简化流程清晰呈现,但Vue-router的复杂性意味着仍有更多细节待探索。后续文章将继续深入,逐步解析更多功能。