皮皮网
皮皮网

【sudohide源码】【handler源码在哪里】【捕捉波峰波谷源码】fpga gtx源码

时间:2025-01-13 06:52:37 来源:ehchache源码下载

1.fpga gtxԴ??
2.FPGA实现 12G-SDI 视频编解码,支持4K60帧,提供2套工程源码+开发板+技术支持
3.Zynq GTX全网最细讲解,aurora 8b/10b协议,OV5640板对板视频传输,提供2套工程源码和技术支持
4.FPGA高端项目:FPGA实现SDI视频编解码工程解决方案,sudohide源码提供3套工程源码和技术支持
5.FPGA高端项目:纯verilog的 25G-UDP 高速协议栈,提供工程源码和技术支持
6.FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持

fpga gtx源码

fpga gtxԴ??

       在FPGA领域,实现SDI视频的编解码以及通过UDP以太网传输,是一个技术含量颇高的项目,本文将详细介绍如何使用Artix7系列FPGA完成这一任务,包括硬件设计、软件编码、以及关键技术点的解析。

       首先,我们考虑使用两种实现SDI视频编解码的方法。第一种方法采用专用的编解码芯片,如GS用于接收,GS用于发送,其优点在于硬件简单,但成本较高。第二种方法则是利用Xilinx系列FPGA的资源,通过GTP/GTX接口实现SDI信号的高速串并转换,通过Xilinx特有的SMPTE SDI IP核进行SDI视频的编解码,这样可以更合理地利用FPGA的资源。本博提供了一套解决方案,包括硬件开发板、工程源码以及相关技术支持。

       硬件设计方面,我们基于Xilinx的Artix7系列FPGA开发板,实现了3G-SDI视频的输入,通过Gva芯片将单端信号转换为差分信号并进行均衡处理。随后,利用GTP接口将差分信号进行解串,再通过SMPTE SDI IP核解码SDI信号为BT格式。解码后的BT视频信号经过转RGB处理,然后通过自研的纯Verilog图像缩放模块将x的视频缩放到x。缩放后的视频数据被缓存在DDR3内存中,以实现三帧缓存。最后,通过自定义的UDP视频发送模块,将视频数据编码后通过以太网接口输出,PC端通过QT上位机接收和显示视频内容。这一过程涵盖了SDI到网络的完整转换流程。

       为了提供更广泛的支持,本博还提供了大量的工程源码、技术方案以及移植说明,包括SDI编解码、以太网通信、图像缩放等关键部分。读者可以根据自己的需求选择合适的方案进行学习和应用。在移植和使用过程中,需要注意的细节包括FPGA型号匹配、DDR配置、以及IP升级等。此外,本博还提供了一套包含工程源码的资料包,可供有需要的读者获取。

       综上所述,本文详细介绍了使用Artix7系列FPGA实现SDI视频编解码+UDP以太网传输的handler源码在哪里全过程,从硬件设计到软件编码,包括关键技术点的解析和实际应用的示例,为读者提供了一套完整的解决方案。无论是学习FPGA技术,还是在实际项目中应用,本文提供的信息都将是一个宝贵资源。

FPGA实现 G-SDI 视频编解码,支持4K帧,提供2套工程源码+开发板+技术支持

       FPGA实现G-SDI视频编解码支持4K帧,提供2套完整工程源码、开发板及技术支持

       方案一:Zynq UltraScale+ MPSoC XCZU4EV方案

       使用高端Xilinx Zynq UltraScale+系列FPGA,该方案采用UHD-SDI GT IP和SMPTE UHD-SDI RX SUBSYSTEM,接收端通过自研G-SDI彩条发生器,通过均衡处理转为差分信号,然后解码并支持后续处理。发送过程涉及编码、解串、均衡和BNC输出。适用于高速接口和图像处理领域。

       方案二:Kintex7-T方案

       低端Kintex7-T方案采用GTX高速接口和SMPTE UHD-SDI IP,接收端同样使用彩条发生器,解串后数据通过ILA观测供用户灵活处理。发送端直接生成彩条视频并进行编码。此方案灵活性高,但FPGA型号要求较低。

       资源推荐

       我的主页有FPGA GT高速接口和SDI编解码专栏,包含不同系列FPGA的实例代码,适合学生和工程师学习。

       设计细节

       工程源码1提供详细框图和Vivado工程,支持G-SDI彩条发生器和硬件均衡。

       源码2包含自定义的GTX解串和SMPTE UHD-SDI解码,支持用户数据处理。

       上板调试与支持

       所需硬件包括FPGA开发板、G-SDI信号发生器、HDMI转换器和4K显示器。提供完整工程源码和详细教程以协助调试。

       福利

       完整工程代码可通过网盘链接获取,由于文件过大,无法直接邮件发送。

Zynq GTX全网最细讲解,aurora 8b/b协议,OV板对板视频传输,提供2套工程源码和技术支持

       没玩过GT资源都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。

       GT资源是Xilinx系列FPGA的重要卖点,也是做高速接口的基础,不管是PCIE、SATA、MAC等,都需要用到GT资源来做数据高速串化和解串处理,Xilinx不同的FPGA系列拥有不同的GT资源类型,低端的A7由GTP,K7有GTX,V7有GTH,更高端的U+系列还有GTY等,他们的速度越来越高,应用场景也越来越高端。

       本文使用Xilinx的Zynq FPGA的GTX资源做板对板的视频传输实验,视频源有两种,捕捉波峰波谷源码分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的`define宏定义进行,默认使用ov作为视频源,调用GTX IP核,用verilog编写视频数据的编解码模块和数据对齐模块,使用2块开发板硬件上的2个SFP光口实现数据的收发;本博客提供2套vivado工程源码,2套工程的不同点在于一套是GTX发送,另一套是GTX接收;本博客详细描述了FPGA GTX 视频传输的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;

       提供完整的、跑通的工程源码和技术支持;

       工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后。

       免责声明:本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网等等),若大佬们觉得有所冒犯,请私信批评教育;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。

       我这里已有的 GT 高速接口解决方案:我的主页有FPGA GT 高速接口专栏,该专栏有 GTP 、 GTX 、 GTH 、 GTY 等GT 资源的视频传输例程和PCIE传输例程,其中 GTP基于A7系列FPGA开发板搭建,GTX基于K7或者ZYNQ系列FPGA开发板搭建,GTH基于KU或者V7系列FPGA开发板搭建,GTY基于KU+系列FPGA开发板搭建。

       GTX 全网最细解读:关于GTX介绍最详细的肯定是Xilinx官方的《ug_7Series_Transceivers》,我们以此来解读;我用到的开发板FPGA型号为Xilinx Kintex7 xc7ktffg-2;带有8路GTX资源,其中2路连接到了2个SFP光口,每通道的收发速度为 Mb/s 到 . Gb/s 之间。GTX收发器支持不同的串行传输接口或协议,比如 PCIE 1.1/2.0 接口、万兆网 XUAI 接口、OC-、串行 RapidIO 接口、 SATA(Serial ATA) 接口、数字分量串行接口(SDI)等等;GTX 基本结构:Xilinx 以 Quad 来对串行高速收发器进行分组,四个串行高速收发器和一个 COMMOM(QPLL)组成一个 Quad,每一个串行高速收发器称为一个 Channel(通道)。GTX 的具体内部逻辑框图:GTX 的发送和接收处理流程:首先用户逻辑数据经过 8B/B 编码后,进入一个发送缓存区(Phase Adjust FIFO),最后经过高速 Serdes 进行并串转换(PISO)。GTX 的参考时钟:GTX 模块有两个差分参考时钟输入管脚(MGTREFCLK0P/N 和 MGTREFCLK1P/N),作为 GTX 模块的参考时钟源,用户可以自行选择。

       GTX 发送接口:用户只需要关心发送接口的时钟和数据即可,GTX例化模块的如何导入jsp源码这部分接口如下:在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下。GTX 接收接口:用户只需要关心接收接口的时钟和数据即可,GTX例化模块的这部分接口如下:在代码中我已为你们重新绑定并做到了模块的顶层,代码部分如下。

       GTX IP核调用和使用:有别于网上其他博主的教程,我个人喜欢用如下图的共享逻辑:这样选择的好处有两个,一是方便DRP变速,二是便于IP核的修改,修改完IP核后直接编译即可。

       设计思路框架:本博客提供2套vivado工程源码,2组工程的不同点在于一套是GTX发送,另一套是GTX接收。第1套vivado工程源码:GTX作为发送端,Zynq开发板1采集视频,然后数据组包,通过GTX做8b/b编码后,通过板载的SFP光口的TX端发送出去。视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频;默认使用ov作为视频源。第2套vivado工程源码:Zynq开发板2的SFP RX端口接收数据,经过GTX做8b/b解码、数据对齐、数据解包的操作后就得到了有效的视频数据,再用我常用的FDMA方案做视频缓存,最后输出HDMI视频显示。

       视频源选择:视频源有两种,分别对应开发者手里有没有摄像头的情况,如果你的手里有摄像头,或者你的开发板有摄像头接口,则使用摄像头作为视频输入源,我这里用到的是廉价的OV摄像头模组;如果你得手里没有摄像头,或者你得开发板没有摄像头接口,则可使用代码内部生成的动态彩条模拟摄像头视频,动态彩条是移动的画面,完全可以模拟视频;默认使用ov作为视频源;视频源的选择通过代码顶层的`define COLOR_IN 宏定义进行。

       视频源配置及采集:OV摄像头需要i2c配置才能使用,需要将DVP接口的视频数据采集为RGB或者RGB格式的视频数据。选择逻辑如下:当(注释) define COLOR_IN时,输入源视频是动态彩条;当(不注释) define COLOR_IN时,输入源视频是ov摄像头。

       视频数据组包:由于视频需要在GTX中通过aurora 8b/b协议收发,所以数据必须进行组包,以适应aurora 8b/b协议标准。视频数据组包模块代码位置如下:首先,我们将bit的视频存入FIFO中,存满一行时就从FIFO读出送入GTX发送;在此之前,需要对一帧视频进行编号,也叫作指令,GTX组包时根据固定的指令进行数据发送,GTX解包时根据固定的指令恢复视频的场同步信号和视频有效信号。

       GTX aurora 8b/b:这个就是调用GTX做aurora 8b/b协议的数据编解码。数据对齐:由于GT资源的aurora 8b/b数据收发天然有着数据错位的情况,所以需要对接受到的解码数据进行数据对齐处理。视频数据解包:数据解包是数据组包的逆过程。图像缓存:我用到了Zynq开发板,用FDMA取代VDMA具有以下优势:不需要将输入视频转为AXI4-Stream流;节约资源,开发难度低;不需要SDK配置,debian内核源码降级不要要会嵌入式C,纯FPGA开发者的福音;看得到的源码,不存在黑箱操作问题。

       视频输出:视频从FDMA读出后,经过VGA时序模块和HDMI发送模块后输出显示器。

       第1套vivado工程详解:开发板FPGA型号:Xilinx--Zynq--xc7zffg-2;开发环境:Vivado.1;输入:ov摄像头或者动态彩条,分辨率x@Hz;输出:开发板1的SFP光口的TX接口;应用:GTX板对板视频传输;工程Block Design如下:工程代码架构如下:综合编译完成后的FPGA资源消耗和功耗预估如下。

       第2套vivado工程详解:开发板FPGA型号:Xilinx--Zynq--xc7zffg-2;开发环境:Vivado.1;输入:开发板2的SFP光口的RX接口;输出:开发板2的HDMI输出接口,分辨率为X@Hz;应用:GTX板对板视频传输;工程Block Design如下:工程代码架构如下:综合编译完成后的FPGA资源消耗和功耗预估如下。

       上板调试验证光纤连接:两块板子的光纤接法如下。静态演示:下面以第1组vivado工程的两块板子为例展示输出效果。当GTX运行4G线速率时输出如下。

       福利:工程代码的获取:代码太大,无法邮箱发送,以某度网盘链接方式发送,资料获取方式:私。网盘资料如下:

FPGA高端项目:FPGA实现SDI视频编解码工程解决方案,提供3套工程源码和技术支持

       FPGA高端项目:实现SDI视频编解码,提供3套工程源码与技术支持

       本文详细阐述了如何使用Xilinx Kintex7-T FPGA开发板进行SDI视频编解码,设计过程涵盖了从输入高清SDI信号,通过GTX解串、SMPTE SDI解码,到最终输出HDMI或SDI视频的全过程。三种不同的工程源码分别对应不同的输出模式:HDMI输出(工程1)、HD-SDI模式(工程2)和3G-SDI模式(工程3),以适应不同的项目需求。

工程1:适用于SDI转HDMI,分辨率为x@Hz,适合于需要高清输出的项目。

工程2:针对SDI转SDI,分辨率为x@Hz,适合于需要直接SDI传输的项目,但需注意x@Hz对显示器有一定要求。

工程3:适用于SDI转3G-SDI,同样支持x@Hz,适用于需要高带宽传输的场景。

       设计中,使用了FPGA的GTP/GTX资源进行解串,SMPTE SDI IP核进行编码,配合BT转RGB模块转换视频格式,以及图像缓存和Gv驱动器等模块,确保视频处理的稳定性和兼容性。此外,还提供了完整的工程源码和设计文档,以及针对FPGA编解码SDI视频的培训计划,以帮助学生、研究生和在职工程师快速上手和开发相关项目。

       要获取这些资源,请查看文章末尾的获取方式。注意,所有代码仅供学习研究,商业用途需谨慎,且部分代码基于公开资源,如有版权问题,请通过私信沟通。

FPGA高端项目:纯verilog的 G-UDP 高速协议栈,提供工程源码和技术支持

       FPGA高端项目:纯verilog的 G-UDP 高速协议栈,提供工程源码和技术支持

       前言:在现有的FPGA实现UDP方案中,我们面临以下几种常见挑战和局限性。首先,有一些方案使用verilog编写UDP收发器,但在其中使用了FIFO或RAM等IP,这种设计在实际项目中难以接受,因为它们缺乏基本的问题排查机制,例如ping功能。其次,有些方案具备ping功能,但代码不开源,用户无法获取源码,限制了问题调试和优化的可能性。第三,一些方案使用了Xilinx的Tri Mode Ethernet MAC三速网IP,尽管功能强大,但同样面临源码缺失的问题。第四,使用FPGA的GTX资源通过SFP光口实现UDP通信,这种方案便捷且无需额外网络变压器。最后,真正意义上的纯verilog实现的UDP协议栈,即全部代码均使用verilog编写,不依赖任何IP,这种方案在市面上较少见,且难以获取。

       本设计采用纯verilog实现的G-UDP高速协议栈,专注于提供G-UDP回环通信测试。它旨在为用户提供一个高度可移植、功能丰富的G-UDP协议栈架构,支持用户根据需求创建自己的项目。该协议栈基于主流FPGA器件,提供了一系列工程源码,适用于Xilinx系列FPGA,使用Vivado作为开发工具。核心资源为GTY,同时支持SFP和QSFP光口。

       经过多次测试,该协议栈稳定可靠,适用于教育、研究和工业应用领域,包括医疗和军用数字通信。用户可以轻松获取完整的工程源码和技术支持。本设计在遵守相关版权和使用条款的前提下,提供给个人学习和研究使用,禁止用于商业用途。

       1G和G UDP协议栈版本介绍:本设计还提供了1G和G速率的UDP协议栈,包括数据回环、视频传输、AD采集传输等应用。通过阅读相关博客,用户可以找到这些版本的工程源码和应用案例。

       性能特点:本协议栈具有以下特性:

       - 全部使用verilog编写,无任何IP核依赖。

       - 高度可移植性,适用于不同FPGA型号。

       - 强大的适应性,已成功测试在多种PHY上。

       - 时序收敛良好。

       - 包括动态ARP功能。

       - 不具备ping功能。

       - 用户接口数据位宽高达位。

       - 最高支持G速率。

       详细设计方案:设计基于FPGA板载的TI DPISRGZ网络芯片和QSFP光口,采用GTY+QSFP光口构建G-UDP高速协议栈,同时利用1G/2.5G Ethernet PHY和SGMII接口实现1G-UDP协议栈。设计包含两个UDP数据通路,分别支持G和1G速率,使用同一高速协议栈。代码中包含axis_adapter.v模块用于8位到位数据宽度的转换,以及axis_switch.v模块用于数据路径切换的仲裁。

       网络调试助手:本设计提供了一个简单的回环测试工具,支持常用Windows软件,用于测试UDP数据收发。

       高速接口资源使用:设计中涉及到G-UDP和1G-UDP数据通路的实现,包括GTY和1G/2.5G Ethernet PHY资源的调用,分别应用于不同速率的UDP通信。

       详细实现方案:设计包含G-PHY层、G-MAC层、1G-MAC层、AXI4-Stream总线仲裁、AXI4-Stream FIFO、G-UDP高速协议栈等关键组件。每个模块都采用verilog实现,确保高性能和可移植性。

       网络数据处理:设计中的G-PHY层处理GTY输出的数据,进行解码、对齐、校验等操作。1G-MAC层则将GMII数据转换为AXI4-Stream数据。协议栈包含动态ARP层、IP层、UDP层,实现标准UDP协议功能。

       工程源码获取:对于感兴趣的开发者,可以获取完整的工程源码和技术支持。工程源码以某度网盘链接方式提供,确保用户能够轻松下载并进行移植和调试。

       总结:本设计提供了一个强大、灵活的G-UDP高速协议栈解决方案,支持多种FPGA平台和PHY接口,适用于各种网络通信需求。通过提供的工程源码和技术支持,用户可以轻松地在自己的项目中集成和使用这些功能。

FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持

       FPGA高端项目:6G-SDI 视频编解码,提供工程源码和技术支持

       前言:Xilinx系列FPGA实现SDI视频编解码的方案主要有两种:一是使用专用编解码芯片,如GS和GS,优点是简单,但成本较高;二是使用FPGA实现,通过合理利用FPGA资源实现解串,操作难度稍大,对FPGA水平要求较高。UltraScale GTH适用于Xilinx UltraScale系列FPGA,支持更高线速率、更多协议类型、更低功耗和更高带宽。Xilinx还提供了SDI视频编解码的专用IP,如SMPTE UHD-SDI,支持多种视频格式编解码。

       设计详情:本文采用Xilinx 7系列Kintex7型号的FPGA实现6G-SDI 视频编解码。设计包括编码和解码两部分,即视频发送和接收。6G-SDI 视频接收过程:使用标准6G-SDI摄像头,通过GVA芯片均衡EQ,然后使用GTX原语解串,将高速串行SDI视频解为并行数据。接着,调用Xilinx的SMPTE UHD-SDI IP核进行视频解码。视频发送过程:使用静态彩条作为源,调用SMPTE UHD-SDI IP核进行编码,然后使用GTX原语串化视频数据。

       系统框图:参考了Xilinx官方设计文档,框图包含GVA均衡EQ、GTX时钟配置与控制、SMPTE UHD-SDI IP核等关键组件。

       GTX 与 SMD UHD-SDI IP:调用GTX原语进行SDI视频解串与串化,使用SMPTE UHD-SDI IP核实现SDI视频编解码。

       输出展示:接收端接收6G-SDI视频后,通过ILA观察数据正确性;发送端输出静态彩条视频。

       Vivado工程详解:开发板为Xilinx 7系列Kintex7,使用Vivado.2,输入为6G-SDI摄像头,输出为静态彩条视频。工程代码架构与资源功耗预估。

       工程移植说明:不同vivado版本需调整工程保存或升级vivado版本。FPGA型号不一致时需更改型号并升级IP。

       上板调试:需要FPGA开发板、6G-SDI相机、BNC转SMA线、SDI转HDMI盒子和HDMI显示器。提供完整工程源码和技术支持。

       福利:工程代码以某度网盘链接方式发送。

Artix7系列FPGA实现SDI视频编解码+图像缩放,基于GTP高速接口,提供2套工程源码和技术支持

       本文介绍了使用Xilinx Artix7系列FPGA实现SDI视频编解码与图像缩放的过程,包括硬件设计、工程源码和技术支持等关键环节。

       Artix7系列FPGA基于GTP高速接口,实现SDI视频编解码+图像缩放,提供2套工程源码和技术支持。

       设计概述

       在FPGA领域,SDI视频编解码有两种主要方案:一种是利用专用芯片,如GS接收器和GS发送器,操作简单但成本较高;另一种是采用FPGA逻辑资源实现SDI编解码,利用Xilinx的GTP/GTX资源解串,SMPTE SDI资源进行编解码。本设计综合了这两种方案的优点,既合理利用了FPGA资源,也满足了对技术实现的灵活性需求。

       工程概述

       本设计基于Xilinx Artix7系列FPGA,通过BNC座子连接同轴SDI视频,利用Gva芯片将SDI信号转换为差分信号,并通过GTP资源实现串行到并行转换。随后,使用SMPTE SDI IP核解码BT视频,输出BT数据。对于图像处理,设计了支持任意比例缩放的纯Verilog图像缩放模块,并使用FDMA图像缓存方案在DDR3中实现三帧缓存,支持HDMI或SDI输出。

       输出方式

       设计提供了HDMI和SDI两种输出方式。在HDMI输出模式下,图像缩放后通过RGB转HDMI模块转换为HDMI视频,并通过HDMI显示器显示。在SDI输出模式下,将缩放后的BT数据编码为SDI视频,通过Gv芯片转换后输出。本设计提供了2套工程源码,分别针对3G-SDI转HDMI和3G-SDI转HD-SDI应用。

       源码详解

       源码包含硬件设计和软件实现的详细信息。工程源码1针对3G-SDI转HDMI应用,包含SDI视频解串、解码、图像缩放、缓存及HDMI输出等关键步骤。工程源码2则专注于3G-SDI转HD-SDI应用,流程包括SDI解串、解码、图像缩放、缓存及SDI输出。

       移植与调试

       针对不同FPGA型号和版本的移植,提供了详细的指导。对于vivado版本不一致、FPGA型号不同等问题,文章给出了相应的解决策略,包括文件另存为、版本升级及IP升级等步骤。

       演示与验证

       通过上板调试和演示,展示了设计的实操效果,包括使用工程1实现的3G-SDI输入图像缩放转HDMI输出的视频演示。

       资源获取

       为了方便读者获取工程代码,文章提供了某度网盘链接的获取方式。同时,考虑到不同用户的需求,还提供了进一步的定制服务和****,以适应不同场景下的需求。

FPGA GTH aurora 8b/b编解码 PCIE 视频传输,提供2套工程源码加QT上位机源码和技术支持

       FPGA GTH aurora 8b/b编解码 PCIE 视频传输,提供2套工程源码加QT上位机源码和技术支持

       前言:本文详细介绍了使用Xilinx Virtex7 FPGA的GTH资源进行视频传输的设计方案。提供2套vivado工程源码,适用于不同需求的视频传输场景,包括使用笔记本电脑模拟的HDMI视频输入或内部生成的动态彩条视频输入。工程包括视频数据的编解码、对齐处理、图像缓存、以及与QT上位机的通信。

       方案描述:设计使用GTH IP核,通过verilog编写视频数据的编解码模块和数据对齐模块,实现通过开发板上的SFP光口进行数据的高速收发。FPGA接收到的数据通过FDMA写入DDR3缓存,再通过XDMA经PCIE2.0总线发送至电脑主机。QT上位机接收并显示图像。

       工程特点:提供2套工程源码,区别在于使用单个SFP光口或两个SFP光口进行数据传输。支持两种视频源输入方式,适用于不同场景需求。工程经过综合编译,适用于在校学生、研究生项目开发及在职工程师学习。提供完整的工程源码和技术支持。

       技术亮点:详细解析了GTH 8b/b编解码机制、PCIE接口设计、图像缓存及QT上位机通信等关键环节。提供资料获取方式,包括完整工程源码和技术支持。

       免责条款:工程源码和资料部分来源于网络资源,包括但不限于CSDN、Xilinx官网等,如有任何侵犯版权行为,请私信博主批评指正。工程仅限个人学习研究使用,禁止用于商业目的。使用时请谨慎考虑法律问题。

       已有解决方案:主页设有FPGA GT高速接口专栏,涵盖不同FPGA系列的视频传输实例,包括基于GTP、GTX、GTH、GTY等资源的PCIE传输案例。

       GTH解读:提供《ug_7Series_Transceivers》文档解读,介绍GTH资源的基本结构、内部逻辑、参考时钟配置、发送和接收处理流程等关键信息。

       IP核调用与使用:介绍了GTH IP核的实例化接口、配置参数选择,以及如何简化IP核调用与修改流程。提供共享逻辑示例,便于用户快速集成到自定义工程中。

       设计思路与框架:描述了视频传输工程的设计思路,包括视频源选择、silicon解码配置、动态彩条生成、视频数据组包、解包与对齐处理等关键步骤。提供使用不同SFP光口数量的框图示例。

       视频传输流程:详细说明了从视频源输入到最终显示图像的完整流程,包括数据编码、传输、缓存、解码与显示等步骤。提供工程源码结构、关键技术点实现代码以及性能预估。

       移植说明:针对不同FPGA型号与vivado版本的兼容性问题,提供了详细的移植指南与注意事项,包括IP升级、FPGA型号更改等步骤。

       上板调试:展示了光纤连接的正确接法,并提供静态与动态演示视频,以验证光纤连接下的视频传输效果。

       工程代码获取:提供工程代码获取方式,通过私信或某度网盘链接发送完整工程源码及技术支持文档。

更多内容请点击【热点】专栏