1.面试 | 你真的源码了解count(*)和count(1)嘛?
面试 | 你真的了解count(*)和count(1)嘛?
在数据处理领域,SQL中的源码聚合函数count(*)和count(1)常被用于统计行数。然而,源码你是源码tensorflow源码查看否真正了解这两者在Spark SQL环境下的行为和性能?本文基于Spark 3.2版本,揭示了count(*)与count(1)在功能与效率上的源码等价性。 首先,源码宜宾软件源码给出在Spark SQL环境中,源码count(*)和count(1)在逻辑执行计划和最终结果方面表现一致。源码通过案例展示,源码我们可以看到当执行count(*)时,源码其在生成逻辑执行计划阶段即被转换为等效的源码count(1)操作。 深入源码分析,源码我们可以发现处理count(*)与count(1)的源码pytorch源码大全逻辑在AstBuilder类的visitFunctionCall方法中被实现。在该方法中,源码处理函数节点的源码代码进行了优化,以高效判断表达式是vetur插件源码否为null,进而节省计算资源。 具体而言,count(*)功能如下:计算检索到的springboot小区源码行总数,包括包含null的行。
对于count(expr[, expr...])和count(DISTINCT expr[, expr...]),它们分别根据提供的表达式是否均为非空或唯一且非空来统计行数。 在判断expression是否为null时,代码优先从expression的nullable属性进行判断,如果该属性无法提供明确结果,再通过isnull函数获取具体值是否为null的信息。这种策略有助于在一定程度上减少不必要的计算。 为帮助读者更全面地理解Spark SQL的count函数,以下是推荐阅读的内容: 澄清 | snappy压缩到底支持不支持split? 为啥?以后的事谁也说不准
转型数仓开发该怎么学
大数据开发轻量级入门方案
OLAP | 基础知识梳理
Flink系列 - 实时数仓之数据入ElasticSearch实战
Flink系列 - 实时数仓之FlinkCDC实现动态分流实战