1.Android ViewRootImpl
2.C#å°å¾çåç´ åä½
3.View 绘制流程源码分析
4.Android性能优化:定性和定位Android图形性能问题——以后台录屏进程为例
5.svelte响应式原理
6.androidä¸InvalidateåpostInvalidateçåºå«
Android ViewRootImpl
æ¬æ主è¦åæ两个é®é¢ï¼
1ã为ä»ä¹View çç»å¶æµç¨æ¯ä» ViewRootImpl çperformTraversals()æ¹æ³å¼å§çï¼
2ãView çinvalidateæ¹æ³æ¯æä¹è§¦åå°ViewRootImpl çperformTraversals()æ¹æ³çã
å¨é 读æ¬æåï¼æ好å äºè§£windowçæ·»å è¿ç¨ï¼Androidæ¶æ¯å¤çæºå¶ å View çç»å¶æµç¨ãæ¨èå é 读以ä¸æç« ï¼
Android WindowåWindowManager
Android-æ¶æ¯æºå¶
Android View çç»å¶æµç¨
android æºç 注éçæææ¯ï¼ViewRootImplæ¯è§å¾å±æ¬¡ç»æç顶é¨ï¼å®ç° View å WindowManager ä¹é´æéçåè®®ãæ¯ WindowManager Global çå é¨å®ç°ä¸éè¦çç»æé¨åã
View çç»å¶æµç¨æ¯ä» ViewRootImpl çperformTraversals()æ¹æ³å¼å§çï¼é£å°åºæ¯åªéè°ç¨äºperformTraversals()æ¹æ³å¢ï¼ä¸é¢æ们åæä¸ä¸ï¼
1.ç§æå±æ§çperformTraversals()æ¹æ³è¯å®æ¯å¨å é¨è°ç¨èµ·æ¥çï¼ç»è¿æç´¢æ¾å°æ¯doTraversal()æ¹æ³è°ç¨äºã
2.æ¥çæ¾å°äºï¼è°ç¨äºdoTraversal() çTraversalRunnable ç±»
3.å é¨åªæä¸ä¸ªå°æ¹å®ä¾åäºTraversalRunnable çå®ä¾mTraversalRunnable ï¼æ¥å°å°ä¸¤ä¸ªæ¹æ³å é½è°ç¨äºmTraversalRunnable ï¼ææ¾ scheduleTraversals æ¯ä¸»å¨è§¦åè¿ä¸ª Runnable ãè¿å°±è¡¨æè°ç¨äºscheduleTraversals ()å½æ°çå°æ¹é½ä¸»å¨è§¦åäºviewçå·æ°ã
4.æ¥çæ们çä¸ä¸ mChoreographer.postCallback åäºä»ä¹
å¯ä»¥çå°ï¼æååèµ°è¿äºscheduleVsyncLocked()æ¹æ³å ã
5.mDisplayEventReceiver çç±» æ¯ FrameDisplayEventReceiverï¼ç»§æ¿èª
DisplayEventReceiver ã
æåèµ°å°è¿é就没äºï¼é£ä¹è¿ä¸ªæ¹æ³æ¯åäºä»ä¹å¢ï¼è¿ä¸ªæ¹æ³ç注éæ¯è¿ä¸ªææï¼å®æå¨ä¸ä¸ä¸ªæ¾ç¤ºå¸§å¼å§æ¶ä¼ éå个åç´åæ¥èå²ãææå°±æ¯ï¼è°ç¨äºè¿ä¸ªæ¹æ³å¯ä»¥æ¶å°ç³»ç»ä¼ éè¿æ¥çåç´åæ¥èå²ä¿¡å·ãAndroidç³»ç»æ¯émså°±ä¼åéä¸ä¸ªVSYNCä¿¡å·ï¼VSYNCï¼vertical synchronization åç´åæ¥ï¼å¸§åæ¥ï¼ï¼è§¦å对UIè¿è¡æ¸²æãè¿ä¸ªåç´åæ¥ä¿¡å¯¹äºåºç¨æ¥è¯´äºï¼åªæäºè®¢é äºçå¬ï¼æè½æ¶å°ãèä¸æ¯è®¢é ä¸æ¬¡ï¼æ¶å°ä¸æ¬¡ã
6.æ¢ç¶æ¯å¨è¿ä¸ªç±»éé¢è®¢é åç´åæ¥ä¿¡å·çï¼é£åè°ä¹åºè¯¥å¨è¿éãäºæ¯æ¾å°äºä»¥ä¸æ¹æ³ã
native code è°ç¨å° onVsyncï¼è¿ä¸ªæ¹æ³ç注é解éå¦ä¸ï¼å½æ¥æ¶å°åç´åæ¥èå²æ¶è°ç¨ãæ¥æ¶è åºè¯¥æ¸²æä¸ä¸ªå¸§ï¼ç¶åè°ç¨ { @link scheduleVsync} æ¥å®æä¸ä¸ä¸ªåç´åæ¥èå²ã
è¿ä¸ªæ¹æ³çå ·ä½å®ç°å¨åé¢åæå°çFrameDisplayEventReceiver ç±»éé¢ã
è¿éå¯ä»¥çå°ï¼å ¶å®mHandlerå°±æ¯å½å主线ç¨çhandlerï¼å½æ¥æ¶å°onVsyncä¿¡å·çæ¶åï¼å°èªå·±å°è£ å°Messageä¸ï¼çå°Looperå¤çï¼æåLooperå¤çæ¶æ¯çæ¶åå°±ä¼è°ç¨runæ¹æ³ï¼è¿éæ¯Handlerçæºå¶ï¼ä¸å解éã
7.æåï¼å¦ä¸å¾è°ç¨æ示ï¼æç»ä»mCallbackQueuesååä¹åæ·»å çä»»å¡åæ§è¡runæ¹æ³ï¼ä¹å°±æ¯TraservalRunnableçrunæ¹æ³ã
æ»ç»ä¸é¢çåæï¼è°ç¨æµç¨å¦ä¸å¾æ示å¦ä¸ï¼
ä¸é¢æ们åæå°åªè¦è°ç¨äºViewRootImpl çscheduleTraversals ()æ¹æ³ï¼æç»å°±è½è°ç¨äºViewRootImpl çperformTraversals()æ¥å¼å§ç»å¶ãé£è¯å®æ¯æ们常è°ç¨çviewå·æ°çæ¥å£ï¼ç»è¿ä¸ç³»åçæ¹æ³è°ç¨ï¼æç»è°ç¨äºViewRootImpl çscheduleTraversals ()æ¹æ³ãä¸é¢æ们åæä¸ä¸å¸¸ç¨çView ç invalidate()æ¥å£æ¯æä¹è°ç¨å°äºViewRootImpl çscheduleTraversals ()æ¹æ³ã
å¯ä»¥çåºï¼invalidateæå¤ä¸ªéè½½æ¹æ³ï¼ä½æç»é½ä¼è°ç¨invalidateInternalæ¹æ³ï¼å¨è¿ä¸ªæ¹æ³å é¨ï¼è¿è¡äºä¸ç³»åçå¤æï¼å¤æViewæ¯å¦éè¦éç»ï¼æ¥ç为该View设置æ è®°ä½ï¼ç¶åæéè¦éç»çåºåä¼ éç»ç¶å®¹å¨ï¼å³è°ç¨ç¶å®¹å¨çinvalidateChildæ¹æ³ã
æ¥çæ们çViewGroup#invalidateChildï¼
ç±äºä¸æåä¸è°ç¨ç¶å®¹å¨çæ¹æ³ï¼å°æåä¼è°ç¨å°ViewRootImplçinvalidateChildInParentæ¹æ³ï¼æ们æ¥ççå®çæºç ï¼ViewRootImpl#invalidateChildInParent:
æåè°ç¨äºscheduleTraversalsæ¹æ³ï¼è§¦åViewçå·¥ä½æµç¨ãè³æ¤ï¼æ们已ç»å®æ´å°åæäºä¸æ¬¡è°ç¨View ç invalidate()æ¹æ³å°è§¦åViewRootImpl çscheduleTraversals()æ¹æ³ã
C#å°å¾çåç´ åä½
å°±æ¯æ¹åä¸å¼ å¾çç大å°åï¼å®ä¹å ¨å±çåéï¼ private Image curImage = null;
private string ImageFileName = null;ä¸é¢çå®ä¹å¨ä¸ä¸ªæé®éé¢ï¼ç¨æ¥æå¼å¾çã//å½ç¶ä½ è¦æå¼å¾çæè¡åã OpenFileDialog OpenDlg = new OpenFileDialog(); if (OpenDlg.ShowDialog() == DialogResult.OK)
{
ImageFileName = OpenDlg.FileName;
curImage = Image.FromFile(ImageFileName);
}åå¨å¦å¤çæé®ä¸é¢å建ä¸å¼ å¾çï¼ç¨æ¥ä¿åæ°å¾çãBitmap bitmap=new Bitmap(,源码);bitmap.Save("xx.jpg",ImageFormat.Jpeg); //è¿æ ·ä¿åå¨å½åç®å½ï¼å¹¶ä¸æå®äºåªè½æ¯è¿ä¸ªæ ¼å¼çï¼å½ç¶å¯ä»¥è®¾ç½®å ¶ä»æ ¼å¼çï¼ä¸é¢æå®æ´ä»£ç ã//////////å ³äºååå¾ç大å°ã///////using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Drawing.Imaging;namespace 使ç¨ä¸å大å°ä¿åå¾ç1
{
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
} private Image curImage = null;
private string ImageFileName = null;
private void openFileToolStripMenuItem_Click(object sender, EventArgs e)
{
OpenFileDialog OpenDlg = new OpenFileDialog();
OpenDlg.Filter = "All ImageFile|*.jpg;*.bmp;*.gif;*.png|(*.bmp)|*.bmp|(*.jpg)|*.jpg|(*.png)|*.png|(*.gif)|*.gif";
OpenDlg.Title = "Open Image File"; if (OpenDlg.ShowDialog() == DialogResult.OK)
{
ImageFileName = OpenDlg.FileName;
curImage = Image.FromFile(ImageFileName);
}
this.Invalidate();
} private void Form1_Paint(object sender, PaintEventArgs e)
{
if (curImage != null)
{
e.Graphics.DrawImage(curImage, 0, 0);
}
} private void button1_Click(object sender, EventArgs e)
{
try
{
if (this.textBox1.Text == "" || this.textBox2.Text == "")
{
MessageBox.Show("请è¾å ¥å¤§å°å®æ´");
}
else
{
int width = Convert.ToInt(textBox1.Text);
int height = Convert.ToInt(textBox2.Text); SaveFileDialog saveDlg = new SaveFileDialog();
saveDlg.Filter = "(All ImageFile)|*.jpg;*.png;*.gif;*.bmp";
saveDlg.Title = "Save ImageFile";
saveDlg.OverwritePrompt = true;
if (saveDlg.ShowDialog() == DialogResult.OK)
{
string filename=saveDlg.FileName;
string extn = filename.Remove(0, saveDlg.FileName.Length - 3); Bitmap newBitmap = new Bitmap(curImage, new Size(width, height)); if (extn.Equals("jpg"))
newBitmap.Save(saveDlg.FileName, ImageFormat.Jpeg);
else if (extn.Equals("png"))
newBitmap.Save(saveDlg.FileName, ImageFormat.Png);
else if (extn.Equals("bmp"))
newBitmap.Save(saveDlg.FileName, ImageFormat.Bmp);
else if (extn.Equals("gif"))
newBitmap.Save(saveDlg.FileName, ImageFormat.Gif);
}
}
}
catch (Exception ex)
{
MessageBox.Show(ex.Message);
}
}
}
}ãããããããããããããããä¸é¢è®¾ç½®ç大å°æ¯éè¿ä½¿ç¨äºï¼ä¸¤ä¸ªTextBoxæ¥è®¾ç½®çã设计代ç (ç¥)ã
View 绘制流程源码分析
在View的绘制流程中,ViewRootImpl的源码setView主流程涉及的关键步骤包括设置PFLAG_FORCE_LAYOUT和PFLAG_INVALIDATED。这一步骤在执行时,源码触发了View的源码重绘逻辑。
接下来,源码当View收到需要重绘的源码视频源码导航下载信号后,会执行invalidate方法。源码这个方法首先计算出需要重绘的源码dirty区域,然后从下向上,源码最终调用到ViewRootImpl的源码scheduleTraversals方法。这个过程中,源码脏区域的源码范围逐步扩大,直至整个View需要进行重绘。源码
在View的源码绘制流程中,PFLAG_FORCE_LAYOUT和PFLAG_INVALIDATED的源码使用至关重要。它们的设置触发了视图的重绘和布局过程,保证了UI在用户操作或其他事件触发时能够及时响应和更新。通过这种方式,系统确保了用户界面的实时性和交互性。
具体来说,当View收到布局或尺寸变化的信号时,会调用requestLayout方法,同时设置PFLAG_FORCE_LAYOUT标志。这个标志告诉系统,当前布局需要强制执行,即使布局尚未完成,也应立即进行更新。同时,invalidate方法的调用,会触发PFLAG_INVALIDATED标志的设置,表明视图需要重绘。
在ViewRootImpl中,scheduleTraversals方法是负责组织和执行视图层级中所有视图的重绘和布局的。它会根据脏区域和布局标志的设置,合理安排视图的更新顺序,确保系统的性能和用户体验。
总结整个流程,View的绘制和布局机制通过一系列的标志(如PFLAG_FORCE_LAYOUT和PFLAG_INVALIDATED)和方法(如requestLayout和invalidate)来协调和控制。这些机制使得系统能够高效地响应用户操作,实现流畅的UI交互。通过深入理解这些源码细节,开发者能够更好地优化UI性能,提高用户体验。
Android性能优化:定性和定位Android图形性能问题——以后台录屏进程为例
简介发现、定性与定位
总结
跟不上旋律节奏的VSYNC
严重异常耗时的dequeueBuffer
VirtualDisplay合成耗时
结论
FPS
初步定位问题
定性问题
定位问题
成果展示
参考
简介本文记录一次Android图形性能问题的分析过程——发现、定性和定位图形性能问题,以及探讨的性能优化方案。
环境:Android Q + MTK + ARM Mali-G。
所分析的性能问题(下称case):打开录屏应用并启动后台录屏,滑动前台应用(滑屏)。性能表现差:CPU、GPU负载显著升高、掉帧、用户明显卡顿感,帧率不足帧,帧渲染、合成耗时急剧飙升(渲染耗时平均为ms左右)。
经过优化后,相同环境和条件下,渲染帧率稳定在帧(提升一倍),渲染耗时平均为8.ms左右(为优化前的不到三分之一的消耗)。
关键词 Keywords: Screen Recording; Frame rate; FPS; GPU utilization; Jank; MediaProjection; VirtualDisplay; MediaCodec; Perfetto; Inferno; Surface; SurfaceTexture; VSYNC; SurfaceFlinger; HWC; Hardware composer; GPU; OpenGL;
发现、定性与定位FPS计算FPS的方法和工具 Android框架层通过hwui配合底层完成渲染。该框架本身提供了逐帧渲染分段耗时记录。通过dumpsys gfxinfo可以获取。
io.microshow.screenrecorder/io.microshow.screenrecorder.activity.MainActivity/android.view.ViewRootImpl@6b9b8a9?(visibility=0)DrawPrepare?Process?Execute3...................1................使用工具统计帧率与平均耗时(同时打印GPU负载),在开启后台录屏的情况下滑动屏幕,平均渲染耗时高达~ms,超出.ms一倍,导致帧率仅帧,显著低于帧。
Average?elapsed?.?msFPS:??│?9.?0.?.?2.#?GPU负载?LOADING?BLOCKING?IDLE?0?#?case的对比——未开启后台录屏Average?elapsed?9.?msFPS:??│?1.?0.?5.?1.通过gfx柱状图直观感受性能数据 直观地感受图形渲染性能,除了帧率感受、触控延时外,还可以通过将gfxinfo的分段耗时通过柱状图展示在屏幕上。
这是case性能问题的gfxinfo柱状图,可以看到红柱和绿柱都非常高,远远超越了流畅标准。其中,绿柱异常放大表明两个Vsync之间耗时显著增长,红柱异常放大表明应用层应用加速使用的DisplayLists大量增长、或图形层使用GLES调用GPU耗时显著增多导致的GPU执行绘制指令耗时变长。
初步定位问题本节记录初步的分析思路和定位过程。首先我们完成实验(启停后台录屏并滑动屏幕触发渲染)、cpa网站源码安装观测以及记录,拿到了后台录屏启停情况下的FPS、分阶段耗时以及GPU负载(相关数据位于FPS小节)。
开发的工具输出的统计数据计算结果非常直观,一眼可见,后台录屏为Draw阶段带来额外的~8倍或~8ms耗时,给Process阶段带来额外的~2倍或~ms耗时。帧率从帧坠落到~帧。
耗时分析 可以看到,主要的额外耗时来自Draw和Process。接下来重点围绕着两part定位问题问题。
StageDescriptionCompDraw创建DisplayLists的耗时。Android的View如果支持硬件加速,绘制工作均通过DisplayLists由GPU绘制,可以处理为onDraw的耗时额外~8ms或~8倍Prepare准备没有额外耗时ProcessDisplayLists执行耗时。即硬件加速机制下提交给GPU绘制的工作耗时额外~ms或~2倍ExecuteFramebuffer前后缓冲区flip动作的耗时,上屏耗时额外不到~1msHz下,上述4个步骤合计耗时小于.ms为正常情况。case为~ms。主要增量来自Draw和Process。
经过上述初步分析、观测后,接下来的分析可以围绕Draw和Process开展。由于Android Draw部分涉及较广,包含App 渲染线程(DisplayLists)、UI线程(onDraw方法创建DisplayLists),以及图形栈耗时如SurfaceFlinger、RenderEngine等都可能增加Draw耗时。
这里一个技巧可以初步判断耗时来自App进程(渲染线程和UI线程)还是来自图形栈。如果能判断耗时来自App或图形栈,那么可以缩小分析范围、减少分析工作量。上述四大阶段的耗时统计分类比较宽,实际上还有更详细的分阶段耗时,它呈现在前文描述过的gfx统计信息柱状图上。gfx柱状图会以蓝色(RGB(,,))呈现onDraw方法创建和更新DisplayLists的耗时。如果case与正常情况对比后,这部分耗时(蓝柱大小对比)差异很小,即可说明额外的Draw耗时不是来自App的,极可能来自图形栈。Besides,结合过度绘制分析,判断case与正常情况下是否有更多的额外绘制次数可以协同判断。
——根据上述指导思想,排查出了case的额外Draw耗时与App onDraw无关,多出来的DisplayLists来自App以外的进程,可能是图形栈如SurfaceFlinger。
定性问题本小节介绍问题追踪过程,通过一些方法定位到各阶段的耗时原因,并定性地得出case性能问题的性质。从本小节开始,围绕Perfetto进行分析。这里贴出perfetto的总览,我将关键的信息排序到顶部。前四行分别为SF负责图形的线程、提交到GPU等待完成的工作、Vsync-App、Vsync-sf,最后两行为case中出现卡顿掉帧的App的主线程(UI)和渲染线程(RenderThread)。
跟不上旋律节奏的VSYNC容易看到,Vsync-sf非常不规律。Vsync-sf是触发SurfaceFlinger一次合成工作的基于Hardware VSYNC虚拟出来的一个信号。它相对于真实硬件信号(HW_VSYNC)一个规律的偏移(在case设备上,Vsync-app与Vsync-sf都被配置为8.3ms,即硬件VSYNC到达后,虚拟的Vsync-app和Vsync-sf延时8.3ms后发出,分别触发App绘制、SurfaceFlinger合成。
而case的Vsync-sf交错、残次、不齐、无规律,显然工况不佳。它将导致SurfaceFlinger不能按照预期的时间间隔将合成的帧提交到Framebuffer(经过Flip后,被提交的Framebuffer将上屏成为显示器的下一帧图像),出现掉帧/丢帧。
As we can see,case的VSYNC-sf出现严重的漂移(见图,第二行的VSYNC-sf残次不齐、跟不上规律、难看且混乱),这导致了丢帧。(但VSYNC-sf的筹码分布1 源码失控仅表示与丢帧的相关性,并不直接表明因果性。)
VSYNC-sf为什么会出现偏差? 出于功耗的考虑,VSYNC-sf合VSYNC-app并不是一定会触发的。如果app或sf并没有更新画面的需求,那么死板固定地调度它们进行绘制和合成是不必的。编程上,负责触发VSYNC-sf和VSYNC-app的两个EventThread会在requestNextVsync调用后才会将下一个VSYNC-sf或VSYNC-app发出。因此,当(各自EventThread的)requestNextVsync没有调用时,VSYNC-app和VSYNC-sf也就出现漂移。BufferQueueLayer::onFrameAvailable会在应用提交后调用,该方法通过调用SF的signalLayerUpdate触发产生下一个VSYNC-sf。
换而言之,出于功耗,或别的什么原因(比如耗时导致的延期,人家是线程实现的消息队列),SurfaceFlinger的SFEventThread有可能不调用requestNextVsync,这将导致Vsync-sf在窗口期内短暂消失——但是也不会出现参差不齐的情况。结合case的VSYNC信号报告来看,VSYNC-sf信号异常切实地提示了性能问题——它的不规律现象表明前后Vsync之间有异常耗时,而非低功耗机制被激活或无屏幕刷新(case性能问题复现时一直在滑前台应用的屏,它每ms都有画面更新的需求)。
VSYNC-sf虽然出现了偏差,但是它与卡顿问题仅有相关性(或者说它是性能问题的结果),并非因果关系。猜测是其他卡顿问题导致了SF延缓了对VSYNC的request,导致其信号出现漂移。VSYNC-sf信号偏差实质上指导意义重大,因为它能提示我们,问题发生在比App更底层的地方(前文分析的结论),且比SurfaceFlinger提交到Framebuffer更上层的位置(VSYNC-sf用于触发合成,合成完成后提交到屏幕双缓冲区)。
这样,将case性能问题的上下界都确定了,问题分析范围从原先的整个图形栈,有效的缩小到了SurfaceFlinger渲染和合成阶段了。
严重异常耗时的dequeueBuffer通读Perfetto,可以看到,出了难看的Vsync-sf以外,还可以看到刺眼的超长耗时的draw(App UI线程)以及耗时变态长的dequeueBuffer(App 渲染线程)调用。相对于正常情况,perfetto报告提示的case的draw方法成倍增长的耗时非常容易被误认为耗时“居然来自一开始就排除掉的App进程",这与前文提出的”问题范围“是不能自洽的——它们是相反的结论,肯定哪里不对。仔细分析才能发现,draw方法确实是消耗了更多墙上时间(但是不意味着消耗了更多CPU时间,因为等待过程是sleep的),但是draw方法是因为等待渲染线程的dequeueBuffer造成的耗时,而dequeueBuffer的严重异常耗时却是被底层的图形栈拖累的。
我们看到,draw严重耗时,渲染线程dequeueBuffer消耗掉~ms的时间。As we all known,Android的Graphics buffer是生产者消费者模型,当作为消费者的SF来不及处理buffer并释放,渲染线程也就需要额外耗时等待buffer就绪。上面还有一段"Waiting GPU Completion"的trace没有贴上来(下图),这段耗时比不开启后台录屏的case下高得多(~3ms对比~ms),说明了一定的GPU性能问题或SF的性能问题,甚至有可能是Display有问题(HWC release耗时过长也会导致SF释放buf、生产者渲染线程dequeueBuffer额外等待)。
这里的机制比较复杂,不熟悉底层Graphics buffer的流水线模型就不好理解。In one world, dequeueBuffer申请的buffer不是凭空new出来的,而是在App-SurfaceFlinger-Framebuffer这一流水线中循环使用的。流水线中的buffer不是无限的,而是有穷的几个。当底层的伙计,如SF和HWC,使用了buffer但是没有来得及释放时(它们的工作没做完之前不会释放buffer),流水线(可以理解成头尾相接的单向队列(ring buffer))没有可用的buffer,此时dequeueBuffer就不得不进入等待,出现耗时看上去很长的问题。实际上,dequeueBuffer耗时的唯一原因几乎仅仅只有一个:底层消费太慢了,流水线没有剩余buffer,因此需要等待。
这个模型抽象理解非常简单。下图,右边消费者是底层图形栈——它每消费完一个buffer就会释放掉,每释放一个buffer应用层能用的buffer就加1。左边生产者是App渲染线程——它调用dequeueBuffer申请一个buffer以将它的画面绘制到这个buffer上。buffer送入BufferQueue后由右边的源码时代的简介消费者(图形栈)进行消费(合成、上屏显示),然后释放buffer。当图形栈来不及release buffer时,dequeueBuffer的调用者(App渲染线程)将由于无可用buffer,就必须挂起等待了,在perfetto上就留下长长的一段”耗时“(实际上是墙上时间,大部分都没有占用CPU)。
以上,这就是为什么说App渲染线程dequeueBuffer严重耗时中的耗时为什么要打引号,为什么要说是被图形层拖累了。
下图可以看到,刨去dequeueBuffer的严重异常耗时,执行渲染的部分耗时相对于正常的case几乎没有差异,这可以断言渲染线程的惨烈耗时主要就是被dequeueBuffer浪费了。
从GPU Completion来看,此时GPU正在为SF工作,因为在图中看到(不好意思没有截全,下图你是看不出来的),dequeueBuffer总是在SF的GPU Completion结束之后结束的,这就表明SF正在通过GPU消费buffer(调用GPU进行合成后提交,然后标记buffer允许被渲染线程dequeue)。dequeueBuffer获取到就绪的buffer此时此刻取决于SF的消费能力——因为case中它是短板。(当然图形层的buffer可用不止SurfaceFlinger需要释放,因为SF释放后buffer实质上流转到更底层的HWC,等它将Buffer提交到屏幕后才会释放,这里释放后才能给App再次使用(上面哪个模型图把SF和HWC合并为流水线的图形层buffer消费者)。
从perfetto报告看HWC release非常及时、余量充足,SF的GPU Completion则较紧密地接着dequeueBuffer返回,基本断言是SF太慢了——排除HWC的责任。(下图看不出来,当时没有截图到HWC的release情况。)
到这里,除了再次确认排除了前台App的问题外,还可以断言问题来自SurfaceFlinger过分耗时。此外将问题范围的下界从整个SF合成流程(上文的Vsync-sf)缩小到了排除HWC的范围。
结论:渲染耗时一切正常,问题出现在SF消费buffer(合成图形)失速了,导致没有可用的buffer供渲染线程使用。从下图的SF的工况(第三列)来看,情况确实如此。
既然一口咬定是SF的锅,那就瞧瞧SF。先看SF的INVALIDATE,这没啥好看的,异常case和正常case都是~2.5ms。主要看refresh,正常case ~6.8ms,异常case ~.8ms。refresh包含SF的合成四件套,包括rebuildLayerStack、CalcuateWorkingSet、Prepare、doComposition。Perfetto报告直接表明,case的后台录屏导致的额外一次合成和配套工作是主要的耗时增量。
之所以会执行两次合成,是因为后台录屏工具编程上通过Android SDK提供的MediaProjection配合VirtualDisplay实现一个虚拟的镜像的屏幕。SurfaceFlinger会将画面输送一份到这个虚拟的Display以实现屏幕图像传送到录屏工具,虚拟的屏幕要求额外的一次合成。从上图可以直接得出结论,case带来的额外工作消耗就是对该录屏用的VirtualDisplay的合成工作(doComposition)带来的。
VirtualDisplay合成耗时由于问题范围已经缩小到了很小的一个范围,在SurfaceFlinger的Refresh过程中,case相对正常应用有巨大的差异耗时,几乎完全来自于对VirtualDisplay的合成耗时(doComposition)。同时也可以看到,两次合成(一次是设备的物理屏幕,一次是case的后台录屏工具创建的虚拟屏幕)中,虚拟屏幕的耗时远远高于物理屏幕(4倍以上)。
通过查看ATRACE的tag(上图,Perfetto中SurfaceFlinger中主线程的各个trace point都是用ATRACE打的tag),结合dumpsys SurfaceFlinger,能直接看到的线索是:
虚拟屏显著耗时,且合成工作通过GLES调用GPU完成
物理屏合成耗时很小,它通过HWC合成
结合图中提示的trace tag、耗时,可以得出结论,使用GPU合成的虚拟屏中因GPU合成耗时很长,导致它显著高于物理屏HWC合成耗时。如果GPU合成能够和HWC合成一样快,或者干脆让虚拟屏也使用HWC合成,那么可以预期SurfaceFlinger的qvm向量机源码合成工作的消耗将显著降低。
结论本小节综合上述三个小节的分析,对节”定性问题“下一个结论。
耗时的本质已经被看透,录屏工具申请创建的VirtualDisplay没有通过HWC进行合成,而是通过GPU进行合成,它耗时很长导致界面卡顿。In one word,case使用的VirtualDisplay的合成方式不够高效。
HWC是Hardward Composer。它接收图形数据,类似于往桌面(真的桌面,不是电脑和手机的桌面)上面叠放照片和纸张——即合成过程。这个工作能将界面上几个窗口叠加在一起后送到屏幕上显示。通过GLES调动GPU也能干这活,不过HWC执行合成的动作是纯硬件的——它很快,比GPU快几倍。
定位问题前面虽然定性了问题原因是合成方式不够高效,但是没有得出其中的原理——为什么虚拟屏不使用高效的HWC进行合成。本节通过介绍HWC的原理、SurfaceFlinger控制合成方式、虚拟屏Surface特性等来介绍图形栈中合成方式的处理模式。掌握了相关管理后,探讨一些尽量通用的共性的解决方案实现性能优化。最后着重介绍多套优化方案中的一种直面根本原因的解决方法——MediaCodec.MediaFormat创建的支持HWC合成的Surface方案。
SurfaceFlinger如何决定使用HWC还是GPU合成? SurfaceFlinger合成主要可以依靠两条路径。其中之一是”纯硬“的HWC合成(在dumpsys SurfaceFlinger中可以看到Composition type为DEVICE),另一个是通过OpenGL让GPU进行合成(Composition type为CLIENT)。
除非是功耗上的设计,否则SurfaceFlinger总是会优先检查本次合成是否支持使用HWC。编程上,在合成阶段之一的prepare过程中,SurfaceFlinger通过prepareFrame在RenderSurface与Hardware Composer(即HWC)的HIDL服务通信,完成hwc layer的创建。但是,layer能够成功创建不意味着一定支持HWC合成。SurfaceFlinger通过getChangedCompositionTypes向HWC查询不支持HWC合成的Layer。该方法返回的layer如果被标记为CLIENT合成,那么这部分Layer无法由HWC进行合成,而只能通过GPU进行合成——case的VirtualDisplay就是这个情况。
部分layer可能不能由HWC合成的原因(除功耗策略、其他软件策略外):
HWC layer达到上限 Hardware Composer支持的layer数量是有限的。查阅公开资料可知,HWC合成动作属于硬件提供的能力,它们的合成能力受到硬件本身的限制。Google官方资料对Android设备的要求是,HWC最少应该支持4个Layer,分别用于一个常规页面上最常见的4个层:壁纸、状态栏、导航栏和应用窗口。 在case设备中,经过测试,该平台的HWC最多支持7个能进行HWC合成的layer,从第8个layer开始,完完全全只能使用CLIENT合成亦即SurfaceFlinger调用RenderEngine通过OpenGL调动GPU进行合成。 正是由于HWC合成layer有上限,因此在弹出多个弹窗、叠加过于复杂时,即使界面简单也有可能出现比较明显的卡顿。
VirtualDisplay的Surface格式不受HWC支持 HWC的硬件合成能力对buffer(Surface封装)内保存的图像的格式有要求。比如,HWC不能处理缩放,仅支持一部分的格式,大多数都还有其他因素会导致不支持,如旋转、部分Alpha等等。In one word,图像格式的数量是远远多于HWC支持的类型数的。当HWC碰到不支持合成的Surface时,就会在前文提过的getChangedCompositionTypes中通知SurfaceFlinger,由SurfaceFlinger转为使用GPU合成。
结合上述几种情况,设计实验验证。其中通过在物理屏上弹窗来增加Layer以获取HWC Layer上限。确认case无法使用HWC合成不是Layer上限导致的问题后,通过对比来验证Surface格式问题。Surface是对native层的buffer的封装,其类型广泛、实现复杂,一个一个试是不现实的。通过对比性能强劲的类似实现可以一探究竟。Android adb提供一个出厂自带的录屏命令screenrecord、用于测试双屏显示功能的虚拟辅助屏幕(开发者模式-模拟辅助屏)、著名远程窥屏工具scrcpy等三个工具是一系列重要参考。
经过测试,screenrecord和scrcpy创建的VirtualDisplay支持HWC合成——这是优化目标。首先看看它们的实现。
编程上,虚拟辅助屏幕采用了与case一模一样的实现——通过创建VirtualDisplay让图形层额外合成一次屏幕到该虚拟屏幕中。虚拟屏幕本质上将画面发送给录屏功能实现,而非进行显示来完成录屏。
通读screenrecord源码,逻辑上,它与虚拟辅助屏、case录屏应用是相同的——VirtualDisplay录屏。但是编程上略有差异:
screenrecord直接通过binder与SurfaceFlinger通信,获取了raw VirtualDisplay,而
svelte响应式原理
Svelte的响应式实现原理主要体现在其编译后的js代码结构中。源代码中的控制逻辑被转化为高效的运行时机制,以确保组件状态的实时更新。当点击"change name"按钮,改动firstName和lastName的值时,init方法中的invalidate函数扮演关键角色,它在初始化时作为instance的参数传递。
invalidate函数内部的make_dirty方法负责标记组件状态的变化。在数组component.$$.dirty中,每位对应个变量的脏状态。通过(i / ) | 0计算索引,比如i=0时,索引为0;i=时,索引为1。而(1 << (i % ))则是向左移动的位数,根据i和的余数。例如,当i=0时,标记的是从右边数第一个变量,i=1时则标记第二个变量。
create_fragment函数中的update方法进一步应用了这些标记。当firstName或lastName的值改变时,对应的dirty数组位会被设置,if条件检查这部分变化。如firstName的值修改,i=0,执行set_data_dev(t1, /*firstName*/ ctx[0]),将新值反映到对应的DOM元素t1上。
set_data_dev方法相当直接,检查并更新DOM的data属性,确保内容与组件状态保持同步。这样,Svelte以简洁的代码实现响应式,使得用户界面实时反映出数据的变化。
androidä¸InvalidateåpostInvalidateçåºå«
Androidä¸å®ç°viewçæ´æ°æ两ç»æ¹æ³ï¼ä¸ç»æ¯invalidateï¼å¦ä¸ç»æ¯postInvalidateï¼å ¶ä¸åè æ¯å¨UI线ç¨èªèº«ä¸ä½¿ç¨ï¼èåè å¨éUI线ç¨ä¸ä½¿ç¨ã
Androidæä¾äºInvalidateæ¹æ³å®ç°çé¢å·æ°ï¼ä½æ¯Invalidateä¸è½ç´æ¥å¨çº¿ç¨ä¸è°ç¨ï¼å 为ä»æ¯è¿èäºå线ç¨æ¨¡åï¼Android UIæä½å¹¶ä¸æ¯çº¿ç¨å®å ¨çï¼å¹¶ä¸è¿äºæä½å¿ é¡»å¨UI线ç¨ä¸è°ç¨ã
ããAndroidç¨åºä¸å¯ä»¥ä½¿ç¨ççé¢å·æ°æ¹æ³æ两ç§ï¼åå«æ¯å©ç¨Handleråå©ç¨postInvalidate()æ¥å®ç°å¨çº¿ç¨ä¸å·æ°çé¢ã
1ï¼å©ç¨invalidate()å·æ°çé¢
ããå®ä¾åä¸ä¸ªHandler对象ï¼å¹¶éåhandleMessageæ¹æ³è°ç¨invalidate()å®ç°çé¢å·æ°;èå¨çº¿ç¨ä¸éè¿sendMessageåéçé¢æ´æ°æ¶æ¯ã
// å¨onCreate()ä¸å¼å¯çº¿ç¨
new Thread(new GameThread()).start();ã
// å®ä¾åä¸ä¸ªhandler
Handler myHandler = new Handler() {
// æ¥æ¶å°æ¶æ¯åå¤ç
public void handleMessage(Message msg) {
switch (msg.what) {
case Activity.REFRESH:
mGameView.invalidate(); // å·æ°çé¢
break;
}
super.handleMessage(msg);
}
};
class GameThread implements Runnable {
public void run() {
while (!Thread.currentThread().isInterrupted()) {
Message message = new Message();
message.what = Activity.REFRESH;
// åéæ¶æ¯
Activity.this.myHandler.sendMessage(message);
try {
Thread.sleep();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}
}
2ï¼ä½¿ç¨postInvalidate()å·æ°çé¢
使ç¨postInvalidateåæ¯è¾ç®åï¼ä¸éè¦handlerï¼ç´æ¥å¨çº¿ç¨ä¸è°ç¨postInvalidateå³å¯ã
class GameThread implements Runnable {
public void run() {
while (!Thread.currentThread().isInterrupted()) {
try {
Thread.sleep();
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
// 使ç¨postInvalidateå¯ä»¥ç´æ¥å¨çº¿ç¨ä¸æ´æ°çé¢
mGameView.postInvalidate();
}
}
}
View ç±»ä¸postInvalidate()æ¹æ³æºç å¦ä¸ï¼å¯è§å®ä¹æ¯ç¨å°äºhandlerçï¼
public void postInvalidate() {
postInvalidateDelayed(0);
}
public void postInvalidateDelayed(long delayMilliseconds) {
// We try only with the AttachInfo because there's no point in invalidating
// if we are not attached to our window
if (mAttachInfo != null) {
Message msg = Message.obtain();
msg.what = AttachInfo.INVALIDATE_MSG;
msg.obj = this;
mAttachInfo.mHandler.sendMessageDelayed(msg, delayMilliseconds);
}
}
é¤äºonCreate()æ¯è¿è¡å¨UI线ç¨ä¸çï¼å ¶å®å ¶ä»å¤§é¨åæ¹æ³é½æ¯è¿è¡å¨UI线ç¨ä¸çï¼å ¶å®å ¶å®åªè¦ä½ 没æå¼å¯æ°ç线ç¨ï¼ä½ ç代ç åºæ¬ä¸é½è¿è¡å¨UI线ç¨ä¸ã
什么是vc?
维生素c
维生素C参加体内的氧化还原过程,促进人体的生长发育,增强人体对疾病的抵抗能力,促进细胞间质中胶原的形成,维持牙齿、骨骼、血管和肌肉的正常功能,增强肝脏的解毒能力。当人体中缺少维生素C时,就会出现牙龈出血、牙齿松动、骨骼脆弱、粘膜及皮下易出血、伤口不易愈合等症状。近年来,科学家们还发现,维生素C能阻止亚硝酸盐和仲胺在胃内结合成致癌物质——亚脱胺,从而减低癌的发病率。
维生素C主要生理功能:
1、 促进骨胶原的生物合成。利于组织创伤口的更快愈合;
2、 促进氨基酸中酪氨酸和色氨酸的代谢,延长肌体寿命。
3、 改善铁、钙和叶酸的利用。
4、 改善脂肪和类脂特别是胆固醇的代谢,预防心血管病。
5、 促进牙齿和骨骼的生长,防止牙床出血。;
6、 增强肌体对外界环境的抗应激能力和免疫力。
维生素C缺乏和疾病:
维生素C缺乏时,其症状表现为:
1. 牙龈肿胀出血,牙床溃烂、牙齿松动。
2. 骨骼畸形、易骨折。
3. 伤口难愈合等。进一步则引起坏血症、贫血。
4. 大出血和心脏衰竭,严重时有猝死的危险。
5. 肌肉纤维衰退,包括心肌衰退。
含维生素C的食物很多,猕猴桃和辣椒中含量最丰富.
VC
一、VC是什么?学VC是学什么?
首先VC是一个软件(IDE集成开发环境)(编译、编辑、调试)
C和C++。但C++中的有些特性是不用的,例如I/O流,多态继承
WindowsSDK(软件开发工具)
VC的灵魂:MFC(微软基础类库)
ATL(ActiveX模板类库)
其他的SDK,如OpenGL,DirectX,ActiveMoive,DrawDib(WinG)
VC是许许多多技术的综合,就好像少林般绝技,一般在应用中学会其中很少一部分就够了。我们的现在目的,其实不过是学一套少林长拳。这套长拳应包括:
1、养成一种严谨的软件开发习惯,熟悉软件工程的基本原则。
2、C语言基础
3、C++最基本内容:类、继承性、封装性、多态性的概念
4、如何用向导建立一个程序框架
5、设计菜单
6、设计工具条
7、设计和使用对话框,熟悉最常用的对话框控件:按钮、静态文本、编辑框等
8、知道怎样新建类、成员函数、成员变量、消息处理函数。
9、了解最常用的Windows消息:如WM_PAINT(重绘窗口),鼠标按下、弹起、移动,初始化对话框,等。
、了解最简单的GDI(图形设备接口):写文字、画框、画点、画线、画圆,设置画笔、画刷。
、熟悉最常用的MFC类:
CWnd
CDocument
CView
CDC
CDialog
CWinApp
CGdiObject及子类
CString、CPoint、CRect、CSize等简单数据类型
CFile
以上提到的这些内容,是每个人都会用到的内容。
二、MFC简介
上述主要内容都是与实际操作关系非常密切的,在此不可能讲清楚;而且,这些在一般的书里都会讲到。我主要将最重要的MFC介绍一下。
MFC是对WindowsAPI的封装,大大简化了我们的工作;学VC主要就是要学MFC,大约有多个类,但常用的也就二三十个。应该象背4级单词一样将这些常用类搞懂;当然不要死记,要通过看帮助、看例子、动手练习来学会它们;而且,并非每个类的内部的所有函数都要学会,要日积月累。如果真的想成为高手,做个笔记本把自己认为重要的类、函数记下来,随时学习,也是很好的突击方法。
下面介绍最重要的MFC。
CWnd:窗口,它是大多数“看得见的东西”的父类(Windows里几乎所有看得见的东西都是一个窗口,大窗口里有许多小窗口),比如视图CView、框架窗口CFrameWnd、工具条CToolBar、对话框CDialog、按钮CButton,etc;一个例外是菜单(CMenu)不是从窗口派生的。该类很大,一开始也不必学,知道就行了。
CDocument文档,负责内存数据与磁盘的交互。最重要的是OnOpenDocument(读入),OnSaveDocument(写盘),Serialize(读写)
CView视图,负责内存数据与用户的交互。包括数据的显示、用户操作的响应(如菜单的选取、鼠标的响应)。最重要的是OnDraw(重画窗口),通常用CWnd::Invalidate()来启动它。另外,它通过消息映射表处理菜单、工具条、快捷键和其他用户消息。你自己的许多功能都要加在里面,你打交道最多的就是它。
CDC设备文本。无论是显示器还是打印机,都是画图给用户看。这图就抽象为CDC。CDC与其他GDI(图形设备接口)一起,完成文字和图形、图像的显示工作。把CDC想象成一张纸,每个窗口都有一个CDC相联系,负责画窗口。CDC有个常用子类CClientDC(窗口客户区),画图通常通过CClientDC完成。
CDialog对话框
CWinApp应用程序类。似于C中的main函数,是程序执行的入口和管理者,负责程序建立、消灭,主窗口和文档模板的建立。最常用函数InitInstance():初始化。
CGdiObject及子类,用于向设备文本画图。它们都需要在使用前选进DC。
CPen笔,画线
CBrush刷子,填充
CFont字体,控制文字输出的字体
CBitmap位图
CPalette调色板
CRgn区域,指定一块区域可以用于做特殊处理。
CFile文件。最重要的不外是Open(打开),Read(读入),Write(写)
CString字符串。封装了C中的字符数组,非常实用。
CPoint点,就是(x,y)对
CRect矩形,就是(left,top,right,bottom)
CSize大小,就是(cx,cy)对(宽、高)
三、用好MSDN和例子
作为提高,推荐看的例子有:
nHello最简单的程序框架
nScribble鼠标绘图。教程:编程基础,GDI
nDiblook图像处理最简单范例
nMFCIE因特网浏览器
nEnroll数据库
nDaoviewDao(数据访问对象)范例。树型和列视控件
nCubeOpenGL范例,画一个不断旋转的方块
nHierSvrOLE服务器
nOclientOLE包容器
nDrawcli鼠标绘图。也包括OLE。
nWordPad写字板。OLE
四、几点经验
A.为什么要用Windows而不是DOS编程
Windows编程并不比DOS编程难很多,只是在刚刚接触的时候感到头绪繁多,不知从何下手。实际上,如果你会C语言,你会发现Windows编程的难度并不比当年学C语言时大。DOS编程要想成为高手,也需要学习几百个函数(无论是TC、BC、MicrosoftC),并要深入了解汇编语言级的DOS功能调用。而现在在Windows下,付出相同的工作量,你却可以获得几倍的收益。如果你以前熟悉DOS编程,现在再搞Windows编程,只要两个星期肯定会感到巨大的优越性:在DOS下,每一件事都要自己干,而且还有K内存、显示精度等的限制,实在是事倍功半了。
B.为什么要用VC而不是其他Windows编程语言
n大多数大型软件(包括Windows自己)都是用C、C++编的,所以可以利用的源代码特别多。例如Photoshop,就有VC的编程接口。的其他的语言都不如VC有历史优势。而且VC的开发工具特别多,从控件公司到硬件开发商,其产品很少敢不提供VC接口的。
nVC适合组织大工程(VB就不行)
nBorlandC++或C++Builder也很不错,并不比VC差。但BC的版本兼容性不好,从3.1到4.0就出现“代沟”,而且VC提供了极为丰富的文档和范例,VC的参考资料也远比BC多。并且VC与其他的VisualStudio成员可以协调工作,对软件工程有利。
n
C.开始不要学WinAPI编程,但以后最好学学WinAPI
特别要注意,开始不要买讲WindowsSDK编程的书。一个臭名昭著的例子就是“HelloWorld”。各种计算机语言在入门课中往往都给出一个例子,显示一行文字“HelloWorld”,无论是在Basic、C、Pascal,甚至汇编中,这个最简单的小程序都几行就可以写完。但在早期的Windows编程中,刚才讲到的“HelloWin”这个有名的例子就要组织一个工程、写上几百行代码才能实现。这就吓跑了很多想学Windows编程的人。实际上,在Windows下显示“Helloworld”,最简单的方法只要5行就够了:
#include“windows.h”
voidWinMain()
{
MessageBox(NULL,”HelloWorld!”,”MyFirstWindowsApplication”,MB_OK);
}
当然这个程序只建立了一个最简单的对话框,但这已经够了。
如果你没有SDK编程的经验,学VC就是要利用MFC绕过Windows编程的许多细节。有好的工具为什么不用呢?现在你在VC写一个”HelloWorld”,只要写一行代码就可以了。
voidCYourView::OnDraw(CDC*pDC)
{
//…….其他的代码
pDC->TextOut(,,”HelloWorld!”);
}
但MFC不是万能的,WinAPI和VC中有很多功能在MFC中并不能反映出来。在入门后,要想发挥VC的完全能力,WindowsAPI还是非常重要的。而且,这些API在其他Windows语言中也用得到。
学语言,与练武道理也差不多。VC、VB、Dlphi、VFP,以及其他的Windows编程语言,都属于同一个门派:Windows门,虽然招式不同,但内功都是一样的,这就是WindowsAPI(应用编程接口),大概是两千个函数。任何武功,招式即使再复杂,通常也能在很短时间内记下来;但内功就不是一朝一夕的事。而且,各门派的内功不同,Unix、Linux门有Uinx的内功,Apple(苹果)门有Mac的内功,Java更是自成一派。我们这里说的学VC,只是学招式,学招式一个月差不多就够了,聪明的两个星期就可以掌握。光学招式,吓唬人是够了,但和高手一过招,非出丑不可。要想精通VC,必须熟悉WindowsAPI。
D.高级语言与自然语言
一门高级语言与一门自然语言是类似的。关键要素有三:
语法:了解C和C++基本语法,这是比较容易的。
修辞:编程的艺术和风格。通常,这是与软件工程联系起来的。算法上的小伎俩并非是关键的。严谨,严格按照规范去做,同时又能发挥出极大的创造性,才是语言学家的本色。
词汇:如何利用别人的工作?如何利用自己以前的工作?这是一个软件工程师成功的关键。如果词汇量不丰富,就写不出好文章,就会有想法表达不出。一个人的语法在上小学之前就基本上学成了,修辞水平也在年轻时就确定了,惟有词汇量需要根据需要不断学习、不断扩充。VC编程中,拥有大的词汇量就意味着要掌握较多的类、函数和其他编程组件。如:WindowsSDK,MFC,以及你所专攻的领域的现成的SDK,比如3D编程中的OpenGL,多媒体编程中的DirectX,图像处理中的Victor库。另外,ActiveX控件的掌握往往也是成败的关键。我们这几年的工作也总结成了一个类库,叫IPX(图像处理框架),大大简化了图像处理的工作;不过现在还有很多细节问题要解决,如果有同学感兴趣可以参与这方面的工作。
学习VC,千万不要用我们在学校里学英语的方法,而要用小孩学说话的方法。所谓学英语的方法,就是我们在本科时学C语言的那种模式:详细搞懂每一个细节,背大量的规则,很少上机实践,没有实际问题供解决,最后由考试来断定学习成果。这种模式的后果大家都清楚:我们学了十几年英语,可有不少人还只会四五千个单词,写百把字的文章,不会说,不能听;尤其要命的是,看不懂VC的帮助文档。我们要象婴儿一样,在使用中学会语法、修辞和词汇;一开始肯定只能编出最糟糕的,就好像小孩开始只会说:“爸爸坐车车”;但“爸爸”“车车”这些词对小孩是最需要的,学习的效率反而最高。学VC的时候,应从我的需要出发,先做一个最简单的东西,然后一点一点复杂起来,象滚雪球一样。
学习VC尤其要和别人交流,你苦苦思考不明白的,也许别人早就解决了。一定要善于学习:从书店找出有用的书;向身边的高手学习;寻找可以利用的源代码、类库、组件、控件、库;如果能上互连网,那就更加能解决问题了。
================================================
Lchrennew:
以下内容由于曾经进行编辑替换(Replace)不让通过,所以采用附加(Append)的方式,在下面把我的版本加上,请大家对比:
VC是英文的缩写形式,其完整形式基本上包括如下几方面:
1. 医学、药品学、生物化学:Vitamins C,简写VC,音译“维他命C”,中文意译为维生素C,又被称为抗坏血酸。