【pop收信源码】【金牛现身源码】【快速刷源码】opencv轮廓源码_opencv 轮廓

1.OpenCV:Mat源码解读
2.OpenCV在MacOS上源码编译OpenCV
3.OpenCV安装教程(编译源码,轮廓轮廓一次成功)提供安装好OpenCV的源码系统镜像
4.10分钟!用Python实现简单的轮廓轮廓人脸识别技术(附源码)
5.opencv棋盘格实现相机标定(附源码)
6.Opencv findcontours函数原理,以及python numpy实现

opencv轮廓源码_opencv 轮廓

OpenCV:Mat源码解读

       OpenCV中的源码核心组件Mat是理解库运作的关键。通过深入阅读其源码,轮廓轮廓我们可以了解到Mat如何管理内存、源码pop收信源码与Sub-mat的轮廓轮廓关系,以及如何支持不同数据类型。源码本文旨在提供对Mat类的轮廓轮廓深入理解,帮助你掌握Mat的源码内存管理机制、数据结构设计,轮廓轮廓以及Mat中数据类型的源码表示方式。通过本文,轮廓轮廓你将对Mat的源码基本构成有清晰的认识,并理解内存分配的轮廓轮廓策略。

       Mat类的实现类似于一个容器,主要构造和析构不同类型的Mat。Mat的内部数据存储在UMatData结构中,通过m.data指针访问。内存分配由UMatData和MatAllocator共同完成。Mat的shape由size(大小)和step(步长)组成,便于计算每个维度所需的内存空间。

       UMatData结构隐藏了内存配置的细节,而MatAllocator根据不同设备实现底层不同的内存管理。以CPU的底层实现为例,这里仅展示其基本架构。理解了这些,Mat的基本构造就有了基础概念。

       Mat的类型设计是其独特之处,用CV_{ bit}{ U/F/S}C{ n}表示,如CV_FC3表示3通道位浮点。金牛现身源码其中depth部分决定基础类型,如CV_F。Mat的大小设计是根据不同类型进行优化的。在OpenCV 5.x版本中,depth用低5位表示,其余位用于通道数。

       通过实际数据类型的例子,如通道的8U类型m0和其子Matm2,可以观察到CONT_FLAG和SUBMAT_FLAG的变化,以及对于非常用数据格式如CV_8UC()的性能影响。OpenCV对1、3、4通道数据有优化,而3通道的数据在某些情况下速度可能接近4通道。

       最后,Mat的高效使用不仅依赖于基础计算,MatExpr起到了桥梁作用,它向上简化接口,向下连接加速指令。理解了Mat的这些特性,你将能够更有效地利用OpenCV的Mat进行数据处理。

OpenCV在MacOS上源码编译OpenCV

       MacOS上OpenCV源码编译与使用教程

       在视觉任务中,开源库OpenCV经常被用到,它支持多种语言接口,适用于多平台。在MacOS上直接安装包不可用时,我们需要自行编译。本文将指导您从opencv_4.8.0和opencv_contrib_4.8.0版本入手,详细展示源码编译与配置过程。

       1. 下载源码并解压

       首先,快速刷源码从官网下载对应版本(4.8.0)的源码,确保opencv与opencv_contrib的版本一致。通过命令行进行下载,解压后放置于工作目录。

       2. 准备CMake

       OpenCV支持CMake编译,需要先安装。创建编译文件夹,然后使用CMake指令配置编译环境,注意指定opencv和opencv_contrib的路径。

       3. CMake编译与下载依赖

       完成CMake配置后,进行make编译,注意网络通畅以确保第三方库的下载。编译成功后,会生成所需文件。

       4. 安装与案例测试

       执行make install,安装OpenCV到指定路径。接着,创建一个C++文件main.cpp,编写简单代码以读取并展示,通过CMakeLists.txt文件配置编译路径。

       5. VS Code环境测试

       在VS Code中,通过CMakeLists.txt配置并编译main.cpp,确认OpenCV库路径正确,运行程序,成功处理。

       总结

       通过上述步骤,您已在MacOS上成功源码编译并配置了OpenCV,实现了处理功能。在实际项目中,这将为您提供灵活的张真源码木块环境和更好的控制。

OpenCV安装教程(编译源码,一次成功)提供安装好OpenCV的系统镜像

       本文提供了一套简洁明了的OpenCV安装教程,旨在帮助开发者实现一次成功安装。首先,选择官方Raspbian-buster-full系统作为操作平台,并建议更换源至清华源,以确保下载过程顺利,避免遇到如GTK2.0下载失败等问题。对于远程操作需求,外接屏幕或使用VNC远程连接是可行方案,同时通过tee命令记录编译过程,以便在远程连接中断时仍能查看详细信息。

       安装系统镜像,完成OpenCV安装后,生成的镜像文件大小仅4.G,压缩后为2.G,直接烧录至TF卡即可使用。该系统已预装VNC等必备软件,配置了静态IP,提供详尽的使用指南,包括树莓派和Windows系统间的文件复制和传输方法。系统兼容树莓派4和3型号,对于有补充需求之处,将在文章末尾进行说明。

       正式安装OpenCV,首先确保安装所需的依赖工具和图像、视频库。按照步骤逐一进行,包括安装构建必需工具、图像工具包、武器源码选择视频工具包、GTK2.0以及优化函数包。在编译OpenCV源码前,下载并解压OpenCV3.4.3及opencv_contrib3.4.3(选择版本时需确保二者版本号一致)。

       采用直接下载或wget下载两种方法获取源码,解压后进入源码目录。创建release文件夹,用于存放cmake编译时产生的临时文件。设置cmake编译参数,安装目录默认为/usr/local,确保参数正确配置,尤其是对于root用户下的cmake命令,需修改OPENCV_EXTRA_MODULES_PATH的值为绝对路径。

       编译过程中,确认进度到达%,以验证安装成功。进行其他配置,包括设置库路径,以便于使用OpenCV库,也可选择不进行设置。配置opencv.conf和bash.bashrc文件,进行必要的参数添加,重启树莓派或重新登录用户后,测试OpenCV使用是否正常。

       演示Python程序使用OpenCV画一条直线,确保Python编译器已安装,执行相关代码。系统镜像中额外提供远程连接和文件传输功能的说明,包括使用VNC或Putty等工具远程控制树莓派的方法,以及如何在树莓派与Windows系统间进行复制粘贴,通过autocutsel软件简化操作流程。

分钟!用Python实现简单的人脸识别技术(附源码)

       Python实现简单的人脸识别技术,主要依赖于Python语言的胶水特性,通过调用特定的库包即可实现。这里介绍的是一种较为准确的实现方法。实现步骤包括准备分类器、引入相关包、创建模型、以及最后的人脸识别过程。首先,需确保正确区分人脸的分类器可用,可以使用预训练的模型以提高准确度。所用的包主要包括:CV2(OpenCV)用于图像识别与摄像头调用,os用于文件操作,numpy进行数学运算,PIL用于图像处理。

       为了实现人脸识别,需要执行代码以加载并使用分类器。执行“face_detector = cv2.CascadeClassifier(r'C:\Users\admin\Desktop\python\data\haarcascade_frontalface_default.xml')”时,确保目录名中无中文字符,以免引发错误。这样,程序就可以识别出目标对象。

       然后,选择合适的算法建立模型。本次使用的是OpenCV内置的FaceRecognizer类,包含三种人脸识别算法:eigenface、fisherface和LBPHFaceRecognizer。LBPH是一种纹理特征提取方式,可以反映出图像局部的纹理信息。

       创建一个Python文件(如trainner.py),用于编写数据集生成脚本,并在同目录下创建一个文件夹(如trainner)存放训练后的识别器。这一步让计算机识别出独特的人脸。

       接下来是识别阶段。通过检测、校验和输出实现识别过程,将此整合到一个统一的文件中。现在,程序可以识别并确认目标对象。

       通过其他组合,如集成检测与开机检测等功能,可以进一步扩展应用范围。实现这一过程后,你将掌握Python简单人脸识别技术。

       若遇到问题,首先确保使用Python 2.7版本,并通过pip安装numpy和对应版本的opencv。针对特定错误(如“module 'object' has no attribute 'face'”),使用pip install opencv-contrib-python解决。如有疑问或遇到其他问题,请随时联系博主获取帮助。

opencv棋盘格实现相机标定(附源码)

       在理解相机标定的原理前,必须明确相机模型的四个坐标系:像素坐标系、图像坐标系、相机坐标系以及世界坐标系。像素坐标系的单位为像素,而图像坐标系则为归一化单位,具体单位(如mm或m)由深度值决定。畸变图像坐标通过相机标定得到的畸变参数校正,从而帮助理解内参矩阵与畸变系数的角色。图像坐标系与相机坐标系的转换需注意,这里的[Xc,Yc,Zc]代表物体在相机坐标系下的位置。相机坐标系与世界坐标系的转换则需理解相机位姿。

       使用OpenCV实现相机标定,首步是准备*7的棋盘格图像,可通过链接获取。确保从不同角度拍摄多张棋盘格图像,关键在于每张图像的角点应保持一致。不一致的图像应排除,确保图像走向一致。主要使用的OpenCV函数用于处理图像与坐标系的转换,具体函数使用可查阅相关文档。

       相机标定的结果通过重投影误差评估。核心代码简化了标定过程,有效提高效率。运行结果展示了棋盘格图像与标定后的结果对比,直观展示了标定效果。项目源码在链接中提供,适用于Ubuntu .系统。使用者只需打印棋盘格,将拍摄的存储于指定文件夹,即可完成标定。

Opencv findcontours函数原理,以及python numpy实现

       OpenCV的Findcontours()函数原理来源于一篇名为《Topological Structural Analysis of Digitized Binary Images by Border Following》的论文。该论文详细介绍了算法的实现,并提供了算法的源代码。

       在论文中,对于一些关键定义进行了阐述:

       1. 轮廓点:在一个4-或8-邻域内,如果存在一个像素为0的点,则该点为轮廓点。

       2. 连通区域的环绕:对于两个相邻的连通区域S1和S2,如果S1上任意一个点的四个方向都能到达S2,那么S2环绕S1。

       3. 外轮廓和孔轮廓:外轮廓是指像素为1的连通域内被像素为0的连通域环绕的轮廓点,孔轮廓是指像素为0的连通区域被像素为1的连通区域环绕的轮廓点。

       4. 父轮廓:定义了层级关系,例如,对于一个像素为1的连通区域S1和一个像素为0的连通区域S2,如果S2环绕S1,则S1的父轮廓为环绕S2的值为1的像素。

       轮廓扫描过程中,从左到右、从上到下的顺序扫描,根据扫描到的边界起始点判断轮廓类型。找到起始点后,根据上一个轮廓的编号判断父轮廓。最后,通过border following找到该轮廓的所有点。

       在实现过程中,需要定义输入,初始化NBD为1,LNBD为1。在每一行扫描开始时,LNBD重置为1。根据当前扫描到的像素值,不断更新当前点,并绕着该点逆时针旋转寻找下一点,并不断更新像素值。

       在实现过程中,遇到了一个问题,即当像素左边和右边同时为0时,需要进行特殊处理。因为轮廓是逆时针寻找,所以可以通过寻找的方位判断该赋值NBD还是-NBD。具体实现可以参考代码。

       修正后,结果与论文一致。有兴趣的朋友可以查看代码。

       结果图展示了轮廓编号、frame边缘、子轮廓、父轮廓、轮廓开始索引和轮廓类型等信息。

qt5和opencv4.3.0实现打开摄像头并截屏拍照,再将灰度化,直方化,边缘检测,怎么写?

       代码如下,觉得有帮助可以采纳下,后面有我在vscode的源代码,可以对照输入测试

       #include <QApplication>

       #include <QMainWindow>

       #include <QPushButton>

       #include <QVBoxLayout>

       #include <QLabel>

       #include <QPixmap>

       #include <QTimer>

       #include <opencv2/opencv.hpp>

       class MainWindow : public QMainWindow

       {

       Q_OBJECT

       public:

       MainWindow(QWidget *parent = nullptr)

       : QMainWindow(parent)

       {

       // 创建显示摄像头图像的标签

       imageLabel = new QLabel(this);

       imageLabel->setAlignment(Qt::AlignCenter);

       // 创建按钮

       QPushButton *captureButton = new QPushButton("拍照", this);

       connect(captureButton, &QPushButton::clicked, this, &MainWindow::captureImage);

       // 创建垂直布局并将标签和按钮添加到布局中

       QVBoxLayout *layout = new QVBoxLayout;

       layout->addWidget(imageLabel);

       layout->addWidget(captureButton);

       // 创建主窗口并设置布局

       QWidget *centralWidget = new QWidget(this);

       centralWidget->setLayout(layout);

       setCentralWidget(centralWidget);

       // 设置定时器,定时更新摄像头图像

       QTimer *timer = new QTimer(this);

       connect(timer, &QTimer::timeout, this, &MainWindow::updateImage);

       timer->start(); // 每毫秒更新一次图像

       }

       private slots:

       void updateImage()

       {

       // 打开摄像头

       cv::VideoCapture cap(0);

       if (!cap.isOpened())

       {

       qDebug() << "无法打开摄像头!";

       return;

       }

       // 读取摄像头图像

       cv::Mat frame;

       cap.read(frame);

       cap.release();

       // 将OpenCV图像转换为Qt图像,并显示在标签上

       QImage qImage(frame.data, frame.cols, frame.rows, frame.step, QImage::Format_BGR);

       QPixmap pixmap = QPixmap::fromImage(qImage);

       imageLabel->setPixmap(pixmap.scaled(imageLabel->size(), Qt::KeepAspectRatio));

       }

       void captureImage()

       {

       // 获取当前摄像头图像

       cv::VideoCapture cap(0);

       if (!cap.isOpened())

       {

       qDebug() << "无法打开摄像头!";

       return;

       }

       cv::Mat frame;

       cap.read(frame);

       cap.release();

       // 转换为灰度图像

       cv::cvtColor(frame, frame, cv::COLOR_BGR2GRAY);

       // 直方化

       cv::equalizeHist(frame, frame);

       // 边缘检测

       cv::Canny(frame, frame, , );

       // 保存图像

       cv::imwrite("captured_image.jpg", frame);

       qDebug() << "已保存为 captured_image.jpg";

       }

       private:

       QLabel *imageLabel;

       };

       int main(int argc, char *argv[])

       {

       QApplication a(argc, argv);

       MainWindow w;

       w.show();

       return a.exec();

       }

       #include "main.moc"

更多内容请点击【娱乐】专栏

精彩资讯