1.å¨flaskä¸ä½¿ç¨jsonifyåjson.dumpsçåºå«
2.Flask 源码剖析 (六):响应是项项目下载怎么实现的
3.关于flask的jsonify与json.dumps的一些追溯和思考
å¨flaskä¸ä½¿ç¨jsonifyåjson.dumpsçåºå«
1.Content-Typeæåºå«
jsonifyçä½ç¨å®é ä¸å°±æ¯å°æä»¬ä¼ å ¥çjsonå½¢å¼æ°æ®åºååæ为jsonå符串ï¼ä½ä¸ºååºçbodyï¼å¹¶ä¸è®¾ç½®ååºçContent-Type为application/jsonï¼æé åºååºè¿åè³å®¢æ·ç«¯ãjsonifyçé¨åæºç å¦ä¸ï¼
def jsonify(*args, **kwargs):
if __debug__:
_assert_have_json()
return current_app.response_class(json.dumps(dict(*args, **kwargs),
indent=None if request.is_xhr else 2), mimetype='application/json')
å¯ä»¥çåºjsonifyå®é ä¸ä¹æ¯ä½¿ç¨äºjson.dumpsæ¥åºååjsonå½¢å¼çæ°æ®ï¼ä½ä¸ºååºæ£æè¿åãindent表示jsonæ ¼å¼åç缩è¿ï¼è¥æ¯Ajax请æ±åä¸ç¼©è¿ï¼å 为ä¸è¬Ajaxæ°æ®æ²¡å¿ è¦ç´æ¥å±ç¤ºï¼ï¼å¦å缩è¿2æ ¼ãä½æ³å¿ ä»ç¬¬ä¸é¨åçå®éªç»ææ们已ç»çåºæ¥äºï¼ä½¿ç¨jsonifyæ¶ååºçContent-Typeå段å¼ä¸ºapplication/jsonï¼è使ç¨json.dumpsæ¶è¯¥å段å¼ä¸ºtext/htmlãContent-Typeå³å®äºæ¥æ¶æ°æ®çä¸æ¹å¦ä½çå¾ æ°æ®ï¼å¦ä½å¤çæ°æ®ï¼å¦ææ¯application/jsonï¼åå¯ä»¥ç´æ¥å½åjson对象å¤çï¼è¥æ¯text/htmlï¼åè¿è¦å°ææ¬å¯¹è±¡è½¬å为json对象ååå¤çï¼ä¸ªäººç解ï¼æ误请ææ£ï¼ã
2.æ¥ååæ°æåºå«
jsonifyå¯ä»¥æ¥ååpythonä¸çdictæé å¨åæ ·çåæ°ï¼å¦ä¸å¾ã
èjson.dumpsæ¯jsonifyå¯ä»¥å¤æ¥ålistç±»ååä¸äºå ¶ä»ç±»åçåæ°ãä½æè¯äºä¸ä¸ï¼å½¢å¼ä¸ºkey1=value1ï¼[key2=value2,...]è¿æ ·çåæ°æ¯ä¸è¡çï¼ä¼æ¥åºâTypeError: dumps() takes exactly 1 argument (0 given)âè¿ä¸é误ï¼èjsonifyä¸ä¼æ¥é并è½æ£å¸¸è¿åæ°æ®ã
æåï¼æ们å¯ä»¥ä½¿ç¨flaskä¸çmake_responseæ¹æ³æè ç´æ¥éè¿Responseç±»ï¼éè¿è®¾ç½®mimetypeåæ°æ¥è¾¾å°å使ç¨jsonifyå·®ä¸å¤çææï¼ä½å°åç¹ä»£ç ä½ä¹èä¸ä¸ºå¢ï¼åµä¸ç®æ´ä¸ç¹æ´ä¸å®¹æåºéï¼åæ°è¶å¤è°è¯åç»´æ¤å°±è¶éº»ç¦ãå½ç¶ï¼ä½¿ç¨åªä¸ªå¹¶ä¸æ¯ç»å¯¹çï¼å¿ è¦æ¶è¦æ ¹æ®å端çæ°æ®å¤çæ¹å¼æ¥å³å®ã
Flask 源码剖析 (六):响应是怎么实现的
Flask 源码剖析 (六):深入理解响应生成机制
在 Flask 框架中,视图函数返回的目源码值默认会被作为 Response 传递给客户端,这一过程对用户来说通常是源码透明的。当调用一个视图函数,项项目下载如下面的目源码简单示例:
python
def hello():
return http_status, body, header
实际上,这个 tuple 会在多个步骤中被转化为一个完整的源码花王尿不湿溯源码 Response。首先,项项目下载fulldispatchrequest 方法会找到并调用相应的目源码方法,然后通过 finalize_request 方法处理返回值,源码这个过程涉及 makeresponse 和 process_response 等关键函数。项项目下载
makeresponse 方法是目源码构建 Response 的核心,它接收视图函数的源码返回值并根据不同情况进行处理,最终通过 responseclass 将其转化为 Response 对象。项项目下载werkzeug 库的目源码 Response 类在此过程中起到基础作用,Flask 自己的源码vc 网游辅助源码 Response 类则继承了 werkzeug 的 Response,并通过 Mixin 机制将具体逻辑封装在 BaseResponse 中。
Headers 类是 Response 的重要组成部分,它以有序列表的形式存储 header,确保了 header 的顺序和处理多个相同 key 的值。用户可以直接通过 get() 方法访问 header,这个方法实际上是在内部列表中查找对应 key 的值。
总的有源码怎么安装来说,Flask 的响应生成是通过一系列精心设计的类和方法进行的,它们保证了响应的结构化和灵活性。如果你想自定义 Response,只需继承 Flask 的 Response 类即可。本文对响应生成机制的剖析,希望能帮助你更好地理解 Flask 的工作原理。
关于flask的云网络验证源码jsonify与json.dumps的一些追溯和思考
有一天,我遇到了一个服务器报警问题,追踪错误栈时,发现是由于在使用 Flask 的 jsonify 函数时传入的字典中混入了 string 和 int 类型的键导致的。修改数据后,我开始思考这一设计背后的逻辑以及为何会如此设定。源码追溯路径指向 JSONDecoder、flask.json.__init__.py 及 _dump_arg_defaults。kettle6.1源码分析这部分源码,我发现项目使用的是继承自 Flask 的 JSONDecoder,稍作修改以兼容如 bson.ObjectId 和 datetime 等数据类型,其主体基于标准库中的 JSONEncoder。
进一步深入 JSONEncoder 的源码,我发现 sort_keys 的使用在 JSONEncoder._iterencode_dict 中。此时,我开始思考是否可以修改为始终使用默认的 False,以确保 key 为纯字符串。然而,官方为何没有选择这一方案?我开始在 GitHub 上寻找答案,最终在 issue 中找到了线索。在 Python 2 中确实如我所想,但在 Python 3 中,设计发生了改变。大佬们解释了背后的理由。
深入思考后,我倾向于支持 Python 3 的设计选择。首先,明确数据处理逻辑(如是否排序)是至关重要的。这里,我认为 Flask 的默认设置为 False 是个错误,应该与标准库保持一致。其次,确保数据类型的一致性是动态语言的局限性之一,这也是我越来越偏爱 Go 的原因。
从工作角度来看,我得出以下思考:永远不要依赖传入的数据,务必进行验证,尤其是在关键业务中。这不仅是对 Flask 设计的反思,也是对编程实践的提醒,强调了数据验证和明确数据处理逻辑的重要性。