1.Spark-Submit 源码剖析
2.Spark源码解析2-YarnCluster模式启动
Spark-Submit 源码剖析
直奔主题吧:
常规Spark提交任务脚本如下:
其中几个关键的参数:
再看下cluster.conf配置参数,如下:
spark-submit提交一个job到spark集群中,大致的经历三个过程:
代码总Main入口如下:
Main支持两种模式CLI:SparkSubmit;SparkClass
首先是checkArgument做参数校验
而sparksubmit则是通过buildCommand来创建
buildCommand核心是AbstractCommandBuilder类
继续往下剥洋葱AbstractCommandBuilder如下:
定义Spark命令创建的方法一个抽象类,SparkSubmitCommandBuilder刚好是实现类如下
SparkSubmit种类可以分为以上6种。SparkSubmitCommandBuilder有两个构造方法有参数和无参数:
有参数中根据参数传入拆分三种方式,然后通过OptionParser解析Args,构造参数创建对象后核心方法是python源码cs通过buildCommand,而buildCommand又是通过buildSparkSubmitCommand来生成具体提交。
buildSparkSubmitCommand会返回List的命令集合,分为两个部分去创建此List,
第一个如下加入Driver_memory参数
第二个是通过buildSparkSubmitArgs方法构建的具体参数是MASTER,DEPLOY_MODE,FILES,CLASS等等,建仓密码指标源码这些就和我们上面截图中是对应上的。是通过OptionParser方式获取到。
那么到这里的话buildCommand就生成了一个完成sparksubmit参数的命令List
而生成命令之后执行的任务开启点在org.apache.spark.deploy.SparkSubmit.scala
继续往下剥洋葱SparkSubmit.scala代码入口如下:
SparkSubmit,kill,request都支持,后两个方法知识支持standalone和Mesos集群方式下。dosubmit作为函数入口,其中第一步是初始化LOG,然后初始化解析参数涉及到类
SparkSubmitArguments作为参数初始化类,继承SparkSubmitArgumentsParser类
其中env是测试用的,参数解析如下,parse方法继承了SparkSubmitArgumentsParser解析函数查找 args 中设置的内核源码变量随机--选项和值并解析为 name 和 value ,如 --master yarn-client 会被解析为值为 --master 的 name 和值为 yarn-client 的 value 。
这之后调用SparkSubmitArguments#handle(MASTER, "yarn-client")进行处理。
这个函数也很简单,根据参数 opt 及 value,设置各个成员的值。接上例,parse 中调用 handle("--master", "yarn-client")后,在 handle 函数中,master 成员将被赋值为 yarn-client。
回到SparkSubmit.scala通过SparkSubmitArguments生成了args,然后调用action来匹配动作是软件源码售卖合同submit,kill,request_status,print_version。
直接看submit的action,doRunMain执行入口
其中prepareSubmitEnvironment初始化环境变量该方法返回一个四元 Tuple ,分别表示子进程参数、子进程 classpath 列表、系统属性 map 、子进程 main 方法。完成了提交环境的准备工作之后,接下来就将启动子进程。
runMain则是执行入口,入参则是执行参数SparkSubmitArguments
Main执行非常的简单:几个核心步骤
先是打印一串日志(可忽略),然后是外卖cps裂变源码创建了loader是把依赖包jar全部导入到项目中
然后是MainClass的生成,异常处理是ClassNotFoundException和NoClassDeffoundError
再者是生成Application,根据MainClass生成APP,最后调用start执行
具体执行是SparkApplication.scala,那么继续往下剥~
仔细阅读下SparkApplication还是挺深的,所以打算另外写篇继续深入研读~
Spark源码解析2-YarnCluster模式启动
YARN 模式运行机制主要体现在Yarn Cluster 模式和Yarn Client 模式上。在Yarn Cluster模式下,SparkSubmit、ApplicationMaster 和 CoarseGrainedExecutorBackend 是独立的进程,而Driver 是独立的线程;Executor 和 YarnClusterApplication 是对象。在Yarn Client模式下,SparkSubmit、ApplicationMaster 和 YarnCoarseGrainedExecutorBackend 也是独立的进程,而Executor和Driver是对象。
在源码中,SparkSubmit阶段首先执行Spark提交命令,底层执行的是开启SparkSubmit进程的命令。代码中,SparkSubmit从main()开始,根据运行模式获取后续要反射调用的类名赋给元组中的ChildMainClass。如果是Yarn Cluster模式,则为YarnClusterApplication;如果是Yarn Client模式,则为主类用户自定义的类。接下来,获取ChildMainClass后,通过反射调用main方法的过程,反射获取类然后通过构造器获取一个示例并多态为SparkApplication,再调用它的start方法。随后调用YarnClusterApplication的start方法。在YarnClient中,new一个Client对象,其中包含了yarnClient = YarnClient.createYarnClient属性,这是Yarn在SparkSubmit中的客户端,yarnClient在第行初始化和开始,即连接Yarn集群或RM。之后就可以通过这个客户端与Yarn的RM进行通信和提交应用,即调用run方法。
ApplicationMaster阶段主要涉及开启一个Driver新线程、AM向RM注册、AM向RM申请资源并处理、封装ExecutorBackend启动命令以及AM向NM通信提交命令由NM启动ExecutorBackend。在ApplicationMaster进程中,首先开启Driver线程,开始运行用户自定义代码,创建Spark程序入口SparkContext,接着创建RDD,生成job,划分阶段提交Task等操作。
在申请资源之前,AM主线程创建了Driver的终端引用,作为参数传入createAllocator(),因为Executor启动后需要向Driver反向注册,所以启动过程必须封装Driver的EndpointRef。AM主线程向RM申请获取可用资源Container,并处理这些资源。ExecutorBackend阶段尚未完成,后续内容待补充。
2024-11-20 15:14
2024-11-20 15:13
2024-11-20 15:09
2024-11-20 14:53
2024-11-20 14:51
2024-11-20 14:13
2024-11-20 13:44
2024-11-20 13:15