【供货商源码】【邯郸直播源码】【机械仿真源码】树网站源码_树木网站

时间:2025-01-13 21:20:38 分类:劲舞辅助源码 来源:部分关键源码

1.html treehtml-tree是树网什么?
2.Redis radix tree 源码解析
3.TreeMap就这么简单源码剖析
4.2022圣诞树代码
5.求决策树源代码。最好使用matlab实现。站源站
6.UE 八叉树Octree2源码分析

树网站源码_树木网站

html treehtml-tree是码树木网什么?

       HTML-Tree是一组实用的Perl编程模块,其核心作用是树网帮助开发者从HTML源代码中解析并构建结构化的树状数据。这款工具主要由HTML-TreeBuilder和HTML-Element两个模块构成。站源站

       HTML-TreeBuilder模块是码树木网供货商源码HTML-Tree的核心组件,它通过应用HTML-Parser技术,树网将复杂的站源站HTML文档分解为一系列的标记,这些标记就像树的码树木网节点,形成了一个清晰的树网层次结构。这个过程就像是站源站将HTML源代码逐层剥开,转化为易于理解和操作的码树木网树形结构。

       在HTML-TreeBuilder生成的树网解析树中,用户可以得到一系列的站源站对象,这些对象都是码树木网HTML-Element类的实例。HTML-Element类是HTML-TreeBuilder构建树结构的基础,它定义了每个标记的属性和内容,使得开发者能够方便地遍历和操作树中的每个元素。

       总的邯郸直播源码来说,HTML-Tree就是一套强大的HTML解析工具,它通过树形结构的方式,为开发者提供了处理HTML文档的高效方式,使得复杂的HTML解析任务变得直观且易于管理。无论是提取数据、遍历结构,还是进行样式和内容的修改,HTML-Tree都能提供强大的支持。

Redis radix tree 源码解析

       Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。

       核心数据结构的定义如下:

       每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。

       以下是插入流程示例:

       场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。

       场景二:在 "abcd" 之后插入 "abcdef"。机械仿真源码从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。

       场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。

       场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。

       删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的linus源码安装高度。

       合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。

       结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。

TreeMap就这么简单源码剖析

       本文主要讲解TreeMap的实现原理,使用的是JDK1.8版本。

       在开始之前,建议读者具备一定的数据结构基础知识。

       TreeMap的萤火商城 源码实现主要通过红黑树和比较器Comparator来保证元素的有序性。如果构造时传入了Comparator对象,则使用Comparator的compare方法进行元素比较。否则,使用Comparable接口的compareTo方法实现自然排序。

       TreeMap的核心方法有put、get和remove等。put方法用于插入元素,同时会根据Comparator或Comparable对元素进行排序。get方法用于查找指定键的值,remove方法则用于删除指定键的元素。

       遍历TreeMap通常使用EntryIterator类,该类提供了按顺序遍历元素的方法。TreeMap的遍历过程基于红黑树的结构,通过查找、比较和调整节点来实现。

       总之,TreeMap是一个基于红黑树的有序映射集合,其主要特性包括元素的有序性、高效的时间复杂度以及灵活的比较方式。在设计和实现需要有序映射的数据结构时,TreeMap是一个不错的选择。

       如有错误或疑问,欢迎在评论区指出,让我们共同进步。

       请注意,上述HTML代码片段经过了精简和格式调整,保留了原文的主要内容和结构,但为了适应HTML格式并删除了不相关的内容(如标题、关注转发等),在字数控制上也有所调整。

圣诞树代码

       1. 绘制年的圣诞树使用Python代码。

       2. 创建一个新的Python文件tree1.py,或者直接运行以下代码:

        ```python

        # 声明树的高度

        height = 5

        # 树的雪花数,初始为1

        stars = 1

        # 以树的高度作为循环次数

        for i in range(height):

        # 打印空格和星号来形成树的每一层

        print(' ' * (height - i) + '*' * stars)

        # 雪花数增加,以形成树的形状

        stars += 2

        ```

       3. 代码是程序员使用开发工具支持的语言编写的源文件,是一套由字符、符号或信号码元以离散形式表示信息的明确规则体系。

       4. 代码设计的原则包括唯一确定性、标准化和通用性、可扩充性与稳定性、便于识别与记忆、力求简短与格式统一以及容易修改等。

       5. 源代码是代码的一个分支,从某种意义上说,源代码相当于代码。

       6. 在现代程序设计语言中,源代码通常以文本文件的形式出现,最常用的格式是为了编译成计算机程序。

       7. 计算机源代码的最终目的是将人类可读文本转换成计算机可执行的二进制指令,这一过程称为编译,由编译器完成。

求决策树源代码。最好使用matlab实现。

       function [Tree RulesMatrix]=DecisionTree(DataSet,AttributName)

       %输入为训练集,为离散后的数字,如记录1:1 1 3 2 1;

       %前面为属性列,最后一列为类标

       if nargin<1

        error('请输入数据集');

       else

        if isstr(DataSet)

        [DataSet AttributValue]=readdata2(DataSet);

        else

        AttributValue=[];

        end

       end

       if nargin<2

        AttributName=[];

       end

        Attributs=[1:size(DataSet,2)-1];

        Tree=CreatTree(DataSet,Attributs);

        disp([char() 'The Decision Tree:']);

        showTree(Tree,0,0,1,AttributValue,AttributName);

        Rules=getRule(Tree);

        RulesMatrix=zeros(size(Rules,1),size(DataSet,2));

        for i=1:size(Rules,1)

        rule=cell2struct(Rules(i,1),{ 'str'});

        rule=str2num([rule.str([1:(find(rule.str=='C')-1)]) rule.str((find(rule.str=='C')+1):length(rule.str))]);

        for j=1:(length(rule)-1)/2

        RulesMatrix(i,rule((j-1)*2+1))=rule(j*2);

        end

        RulesMatrix(i,size(DataSet,2))=rule(length(rule));

        end

       end

       function Tree=CreatTree(DataSet,Attributs) %决策树程序 输入为:数据集,属性名列表

        %disp(Attributs);

        [S ValRecords]=ComputEntropy(DataSet,0);

        if(S==0) %当样例全为一类时退出,返回叶子节点类标

        for i=1:length(ValRecords)

        if(length(ValRecords(i).matrix)==size(DataSet,1))

        break;

        end

        end

        Tree.Attribut=i;

        Tree.Child=[];

        return;

        end

        if(length(Attributs)==0) %当条件属性个数为0时返回占多数的类标

        mostlabelnum=0;

        mostlabel=0;

        for i=1:length(ValRecords)

        if(length(ValRecords(i).matrix)>mostlabelnum)

        mostlabelnum=length(ValRecords(i).matrix);

        mostlabel=i;

        end

        end

        Tree.Attribut=mostlabel;

        Tree.Child=[];

        return;

        end

        for i=1:length(Attributs)

        [Sa(i) ValRecord]=ComputEntropy(DataSet,i);

        Gains(i)=S-Sa(i);

        AtrributMatric(i).val=ValRecord;

        end

        [maxval maxindex]=max(Gains);

        Tree.Attribut=Attributs(maxindex);

        Attributs2=[Attributs(1:maxindex-1) Attributs(maxindex+1:length(Attributs))];

        for j=1:length(AtrributMatric(maxindex).val)

        DataSet2=[DataSet(AtrributMatric(maxindex).val(j).matrix',1:maxindex-1) DataSet(AtrributMatric(maxindex).val(j).matrix',maxindex+1:size(DataSet,2))];

        if(size(DataSet2,1)==0)

        mostlabelnum=0;

        mostlabel=0;

        for i=1:length(ValRecords)

        if(length(ValRecords(i).matrix)>mostlabelnum)

        mostlabelnum=length(ValRecords(i).matrix);

        mostlabel=i;

        end

        end

        Tree.Child(j).root.Attribut=mostlabel;

        Tree.Child(j).root.Child=[];

        else

        Tree.Child(j).root=CreatTree(DataSet2,Attributs2);

        end

        end

       end

       function [Entropy RecordVal]=ComputEntropy(DataSet,attribut) %计算信息熵

        if(attribut==0)

        clnum=0;

        for i=1:size(DataSet,1)

        if(DataSet(i,size(DataSet,2))>clnum) %防止下标越界

        classnum(DataSet(i,size(DataSet,2)))=0;

        clnum=DataSet(i,size(DataSet,2));

        RecordVal(DataSet(i,size(DataSet,2))).matrix=[];

        end

        classnum(DataSet(i,size(DataSet,2)))=classnum(DataSet(i,size(DataSet,2)))+1;

        RecordVal(DataSet(i,size(DataSet,2))).matrix=[RecordVal(DataSet(i,size(DataSet,2))).matrix i];

        end

        Entropy=0;

        for j=1:length(classnum)

        P=classnum(j)/size(DataSet,1);

        if(P~=0)

        Entropy=Entropy+(-P)*log2(P);

        end

        end

        else

        valnum=0;

        for i=1:size(DataSet,1)

        if(DataSet(i,attribut)>valnum) %防止参数下标越界

        clnum(DataSet(i,attribut))=0;

        valnum=DataSet(i,attribut);

        Valueexamnum(DataSet(i,attribut))=0;

        RecordVal(DataSet(i,attribut)).matrix=[]; %将编号保留下来,以方便后面按值分割数据集

        end

        if(DataSet(i,size(DataSet,2))>clnum(DataSet(i,attribut))) %防止下标越界

        Value(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))=0;

        clnum(DataSet(i,attribut))=DataSet(i,size(DataSet,2));

        end

        Value(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))= Value(DataSet(i,attribut)).classnum(DataSet(i,size(DataSet,2)))+1;

        Valueexamnum(DataSet(i,attribut))= Valueexamnum(DataSet(i,attribut))+1;

        RecordVal(DataSet(i,attribut)).matrix=[RecordVal(DataSet(i,attribut)).matrix i];

        end

        Entropy=0;

        for j=1:valnum

        Entropys=0;

        for k=1:length(Value(j).classnum)

        P=Value(j).classnum(k)/Valueexamnum(j);

        if(P~=0)

        Entropys=Entropys+(-P)*log2(P);

        end

        end

        Entropy=Entropy+(Valueexamnum(j)/size(DataSet,1))*Entropys;

        end

        end

       end

       function showTree(Tree,level,value,branch,AttributValue,AttributName)

        blank=[];

        for i=1:level-1

        if(branch(i)==1)

        blank=[blank ' |'];

        else

        blank=[blank ' '];

        end

        end

        blank=[blank ' '];

        if(level==0)

        blank=[' (The Root):'];

        else

        if isempty(AttributValue)

        blank=[blank '|_____' int2str(value) '______'];

        else

        blank=[blank '|_____' value '______'];

        end

        end

        if(length(Tree.Child)~=0) %非叶子节点

        if isempty(AttributName)

        disp([blank 'Attribut ' int2str(Tree.Attribut)]);

        else

        disp([blank 'Attribut ' AttributName{ Tree.Attribut}]);

        end

        if isempty(AttributValue)

        for j=1:length(Tree.Child)-1

        showTree(Tree.Child(j).root,level+1,j,[branch 1],AttributValue,AttributName);

        end

        showTree(Tree.Child(length(Tree.Child)).root,level+1,length(Tree.Child),[branch(1:length(branch)-1) 0 1],AttributValue,AttributName);

        else

        for j=1:length(Tree.Child)-1

        showTree(Tree.Child(j).root,level+1,AttributValue{ Tree.Attribut}{ j},[branch 1],AttributValue,AttributName);

        end

        showTree(Tree.Child(length(Tree.Child)).root,level+1,AttributValue{ Tree.Attribut}{ length(Tree.Child)},[branch(1:length(branch)-1) 0 1],AttributValue,AttributName);

        end

        else

        if isempty(AttributValue)

        disp([blank 'leaf ' int2str(Tree.Attribut)]);

        else

        disp([blank 'leaf ' AttributValue{ length(AttributValue)}{ Tree.Attribut}]);

        end

        end

       end

       function Rules=getRule(Tree)

        if(length(Tree.Child)~=0)

        Rules={ };

        for i=1:length(Tree.Child)

        content=getRule(Tree.Child(i).root);

        %disp(content);

        %disp([num2str(Tree.Attribut) ',' num2str(i) ',']);

        for j=1:size(content,1)

        rule=cell2struct(content(j,1),{ 'str'});

        content(j,1)={ [num2str(Tree.Attribut) ',' num2str(i) ',' rule.str]};

        end

        Rules=[Rules;content];

        end

        else

        Rules={ ['C' num2str(Tree.Attribut)]};

        end

       end

UE 八叉树Octree2源码分析

       UE中八叉树Octree2源码分析,本文旨在深入理解UE八叉树的具体实现。八叉树概念广泛熟悉,但初次接触UE实现时仍需思考。UE八叉树简化应用,多数直接使用方便。本文针对UE4.至UE5.1版本八叉树源码进行详细解析。

       UE八叉树主要结构包括:TreeNodes、ParentLinks、TreeElements、FreeList、RootNodeContext和MinLeafExtent。TreeNodes存储节点信息,每个FNode记录当前节点元素数量及子节点Index;ParentLinks记录节点父节点ID;TreeElements存储元素数据;FreeList记录空闲FNode下标;RootNodeContext和MinLeafExtent与八叉树构造相关,用于确定节点半径。

       UE八叉树构造过程依赖AddElement方法,实现在AddElementInternal中。首先判断节点是否为叶子节点。若无子节点且元素数量超过预设阈值,或节点半径小于MinLeafExtent,则创建子节点。否则,直接将元素加入当前节点。若需创建子节点,清空当前节点元素,分配八个子节点,递归处理非叶节点情况。

       RemoveElement方法根据ElementId移除元素。首先在TreeElements中移除元素,然后从节点向上遍历,检查元素数量过少的节点,进行塌缩重构,将子节点元素移入当前节点。

       UE八叉树查询接口包括FindElement、FindElementsWithBoundsTest等,核心目的是遍历节点和子节点以满足查询条件。UE八叉树用于高效空间数据处理,通过Octree2类声明实现。例如,PrecomputedLightVolume类定义ElementType和OctreeSemantics,便于特定应用使用。

       UE八叉树内存管理关键在于TreeElement数组,使用TInlineAllocator或FDefaultAllocator需考虑应用场景。空间数据结构如四叉树、八叉树等在空间划分算法中具有重要应用,优化碰撞检测及实现复杂场景。