欢迎来到【kkchat软件源码】【net后台框架源码】【京东源码热点】redis 源码数-皮皮网网站!!!

皮皮网

【kkchat软件源码】【net后台框架源码】【京东源码热点】redis 源码数-皮皮网 扫描左侧二维码访问本站手机端

【kkchat软件源码】【net后台框架源码】【京东源码热点】redis 源码数

2024-12-27 00:44:26 来源:{typename type="name"/} 分类:{typename type="name"/}

1.redis 码数Դ????
2.Redis 哨兵模式 - 源码梳理
3.Redis 主从复制 - 源码梳理
4.Redis 实现分布式锁 +Redisson 源码解析
5.Redis 源码剖析 3 -- redisCommand
6.Redis radix tree 源码解析

redis 源码数

redis Դ????

       本文将深入探讨如何利用 Redis 实现游戏中的实时排行榜,并提供实现细节和源码。码数

       首先,码数我们以一个坦克手游为例。码数游戏中每个角色可拥有多种类型的码数坦克,玩家可以加入军团(公会)。码数kkchat软件源码这个系统需要实现两种主要的码数排行榜:等级排行榜和通天塔排行榜。

       等级排行榜的码数实现思路是将等级和战斗力合并为一个复合积分。我们可以设定一个公式:分数 = 等级* + 战力。码数因为玩家等级范围从1到,码数战斗力范围从0到,码数所以我们设计时考虑到,码数等级需要3位数,码数战斗力需要位数,码数合计需要位数的码数积分,而Redis的有序集合(SortedSet)的score取值范围是位整数或双精度浮点数,足以容纳这个需求。

       对于通天塔排行榜,我们采用类似但略有不同的策略。要求相同层数下,通关时间越早越排在前。我们可以将通关时间转换为相对于一个较远时间点(如--)的相对时间,计算公式为:分数 = 层数 * ^N + (基准时间 - 通关时间)。这里我们选择一个远到足以避免现实时间影响的时间戳,从而确保排名的公正性。

       为了实现实时更新排行榜数据,我们采用一个策略:使用 Redis 的有序集合存储玩家的复合积分(如角色uid和坦克id),而使用哈希存储动态数据(如玩家的其他相关信息)。当玩家等级或战斗力发生改变时,实时更新有序集合中的积分值即可。对于其他可能变化的数据,也相应地更新哈希表中的数据。

       在取排行榜时,以等级排行榜为例,我们可以使用 Redis 的命令来获取数据。具体的net后台框架源码代码实现通常涉及多步骤操作,例如准备数据、排序、分批取数据等。优化点在于合理使用 Redis 的 Pipeline 和 Multi 模式,以提高性能和效率。

       最终,排行榜的实现并不止于此,我们需要考虑的细节还包括对排行榜数据的展示、排序算法的优化等。这里提供了一个基本框架和实现思路,具体的代码和详细步骤需要根据实际项目需求和环境进行调整。

       通过以上内容,我们已经对如何利用 Redis 来搭建游戏排行榜系统有了深入的理解。通过合理的数据结构设计和 Redis 命令的运用,可以实现高效、实时且易于维护的排行榜功能。

Redis 哨兵模式 - 源码梳理

       本文以Redis 7.0.版本为基准,如有不妥之处,敬请指正。

       哨兵模式的代码流程逻辑如下:哨兵节点每秒(主从切换时为1秒)向已知的主节点和从节点发送info命令。接收到主节点的info回复后,解析其中的slave字段信息,进而创建相应的从节点instance。收到从节点的info回复后,解析其中的slave_master_host、slave_master_port、slave_master_link_status、slave_priority、slave_repl_offset、replica_announced等信息(步骤2和sentinelInfoReplyCallback)。

       在sentinel.masters的初始数据中,来自于sentinel.conf中的monitor,利用info命令探测主节点及其所属的从节点。通过订阅__sentinel__:hello频道,获取其他哨兵节点的京东源码热点信息。其中,link->act_ping_time表示最早一次未收到回复的ping请求发送时间,收到回复后其会被重置为0。因此,其不为0时,表示有未收到回复的ping请求。link->last_avail_time表示最近一次收到对ping有效回复的时间,link->last_pong_time表示最近一次收到对ping回复(有效和无效)的时间,link->pc_last_activity表示最近一次收到publish的消息,ri->role_reported_time表示最近一次收到info且回复中role相比于上次发生改变的时间。

       Raft一致性算法

       thesecretlivesofdata.com...

Redis 主从复制 - 源码梳理

       本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。

       复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。

       每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。

       为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的2017维密源码引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。

       通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。

       针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。

       当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。

Redis 实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,c 考勤系统 源码分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

Redis 源码剖析 3 -- redisCommand

       Redis 使用 redisCommand 结构体处理命令请求,其内包含一个指向对应处理函数的 proc 指针。redisCommandTable 是一个存储所有 Redis 命令的数组,位于 server.c 文件中。此数组通过 populateCommandTable() 函数填充,该函数将 redisCommandTable 的内容添加到 server.commands 字典,将 Redis 支持的所有命令及其实现整合。

       populateCommandTable() 函数中包含 populateCommandTableParseFlags() 子函数,用于将 sflags 字符串转换为对应的 flags 值。lookupCommand*() 函数族负责从 server.commands 中查找相应的命令。

Redis radix tree 源码解析

       Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。

       核心数据结构的定义如下:

       每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。

       以下是插入流程示例:

       场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。

       场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。

       场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。

       场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。

       删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。

       合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是否进行合并操作。

       结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。

Redis 源码分析字典(dict)

       Redis 的内部字典世界:从哈希表到高效管理的深度解析

       Redis,作为开源的高性能键值存储系统,其内部实现的字典数据结构是其核心组件之一。这个数据结构采用自定义的哈希表——dictEntry,巧妙地存储和管理着键值对。让我们一起深入理解这一强大工具的运作机制。

       首先,Redis的字典是基于哈希表的,通过哈希函数将键转换为数组索引,实现高效查找。dictEntry结构巧妙地封装了键(key)、值(value)以及指向下一个节点的指针,构成了数据存储的基本单元。同时,dict包含一系列操作函数,包括哈希计算、键值复制、比较以及销毁操作,这些函数的指针类型(dictType)和实际数据结构共同构建了其高效性能。

       在字典的管理中,rehash是一个关键概念,它标志着哈希表的重新分布过程。rehash标志是一个计数器,用于跟踪当前哈希表实例的状态,确保在负载过高时进行扩容。当ht_used[0]非零,且满足特定条件(如元素数量超过初始桶数),服务器会触发resize操作,这通常在serverCron定时任务中进行,以避免磁盘I/O竞争。

       rehash过程中,Redis采取渐进式策略,通过dictRehash函数,逐个移动键值对到新哈希表,确保操作的线程安全。为了避免长时间阻塞,这个过程被分散到函数中,并通过serverCron定时任务,以毫秒级的步长进行,确保在无磁盘写操作时进行。

       在处理过期键时,dictRehashMilliseconds()函数扮演重要角色,它在rehash时监控时间消耗,确保性能。rehash过程中,dictAdd负责插入新哈希表,而dictFind和dictDelete则需处理ht_table[0]和ht_table[1]的键值对。

       Redis的默认哈希算法采用SipHash,保证了数据的分布均匀性。在持久化时,负载因子默认设置为5,而rehash后,数据结构会采用迭代器的形式,分为安全和非安全两种,以满足不同场景的需求。

       在实际操作中,如keysCommand,会选择安全模式以避免重复遍历,而在处理大规模数据时,如scan命令,可能需要使用非安全模式,但需注意可能带来的问题。

       总的来说,Redis的字典数据结构是其高效性能的基石,通过精细的哈希管理、rehash策略以及迭代器设计,确保了在高并发和频繁操作下的稳定性和性能。深入理解这些内部细节,对于优化Redis性能和应对复杂应用场景至关重要。