1.golang map 源码解读(8问)
2.golang源码系列---手把手带你看list实现
3.图解Go里面的源码WaitGroup了解编程语言核心实现源码
4.Go的执行原理以及Go的命令
5.Go语言源码阅读分析(3)-- unsafe
6.golang源码系列---手把手带你看heap实现
golang map 源码解读(8问)
map底层数据结构为hmap,包含以下几个关键部分:
1. buckets - 指向桶数组的走读指针,存储键值对。源码
2. count - 记录key的走读数量。
3. B - 桶的源码数量的对数值,用于计算增量扩容。走读墨香源码是什么意思
4. noverflow - 溢出桶的源码数量,用于等量扩容。走读
5. hash0 - hash随机值,源码增加hash值的走读随机性,减少碰撞。源码
6. oldbuckets - 扩容过程中的走读旧桶指针,判断桶是源码否在扩容中。
7. nevacuate - 扩容进度值,走读小于此值的源码已经完成扩容。
8. flags - 标记位,用于迭代或写操作时检测并发场景。
每个桶数据结构bmap包含8个key和8个value,以及8个tophash值,用于第一次比对。
overflow指向下一个桶,桶与桶形成链表存储key-value。
结构示意图在此。
map的初始化分为3种,具体调用的函数根据map的初始长度确定:
1. makemap_small - 当长度不大于8时,只创建hmap,不初始化buckets。
2. makemap - 当长度参数为int时,底层调用makemap。
3. makemap - 初始化hash0,计算对数B,并初始化buckets。
map查询底层调用mapaccess1或mapaccess2,前者无key是否存在的bool值,后者有。
查询过程:计算key的hash值,与低B位取&确定桶位置,获取tophash值,比对tophash,相同则比对key,搜索源码精灵获得value,否则继续寻找,直至返回0值。
map新增调用mapassign,步骤包括计算hash值,确定桶位置,比对tophash和key值,插入元素。
map的扩容有两种情况:当count/B大于6.5时进行增量扩容,容量翻倍,渐进式完成,每次最多2个bucket;当count/B小于6.5且noverflow大于时进行等量扩容,容量不变,但分配新bucket数组。
map删除元素通过mapdelete实现,查找key,计算hash,找到桶,遍历元素比对tophash和key,找到后置key,value为nil,修改tophash为1。
map遍历是无序的,依赖mapiterinit和mapiternext,选择一个bucket和offset进行随机遍历。
在迭代过程中,可以通过修改元素的key,value为nil,设置tophash为1来删除元素,不会影响遍历的顺序。
golang源码系列---手把手带你看list实现
本文提供Golang源码中双向链表实现的详细解析。
双向链表结构包含头节点对象root和链表长度,无需遍历获取长度,链表节点额外设指针指向链表,方便信息获取。
创建双向链表使用`list.New`函数,初始化链表。
`Init`方法可初始化或清空链表,链表结构内含占位头结点。
`Len`方法返回链表长度,由结构体字段存储,diem源码分析无需遍历。
`Front`与`Back`分别获取头结点和尾结点。
`InsertBefore`与`InsertAfter`方法在指定节点前后插入新节点,底层调用`insertValue`实现。
`PushFront`与`PushBack`方法分别在链表头部和尾部插入新节点。
`MoveToBack`与`MoveToFront`内部调用`move`方法,将节点移动至特定位置。
`MoveBefore`与`MoveAfter`将节点移动至指定节点前后。
`PushBackList`与`PushFrontList`方法分别在链表尾部或头部插入其他链表节点。
例如,原始链表A1 - A2 - A3与链表B1 - B2 - B3,`PushFrontList`结果为B1 - B2 - B3 - A1 - A2 - A3,`PushBackList`结果为A1 - A2 - A3 - B1 - B2 - B3。
图解Go里面的WaitGroup了解编程语言核心实现源码
sync.WaitGroup核心实现逻辑简单,主要用于等待一组goroutine退出。它通过Add方法指定等待的goroutine数量,Done方法递减计数。计数为0时,等待结束。sync.WaitGroup内部使用了一个state1数组,其中只有一个元素,类型为[3]uint。这是为了内存对齐,确保数据按照4字节对齐,从而在位和位平台间兼容。
内部元素采用uint类型进行计数,长度为8字节。这是为了防止在位平台上对字节的uint操作可能不是原子的情况。使用uint保证了原子操作的执行和性能。在CPU缓存线(cache line)的上下文中,8字节长度可能有助于确保对缓存线的操作是原子的,从而避免数据损坏。
测试8字节指针的构造,验证了在经过编译器进行内存分配对齐后,如果元素指针的地址不能被8整除,则其地址+4可以被8整除。这展示了编译器层内存对齐的实现细节。
sync.WaitGroup中的8字节uint采用分段计数的方式,高位记录需要Done的dnf抽奖源码数量,低位记录正在等待结束的计数。
源码的核心原理包括使用位uint进行计数,通过高位记录需要Done的数量和低位记录等待的数量。当发现count>0时,Wait的goroutine会排队等待。任务完成后,goroutine执行Done操作,直到count==0,完成并唤醒所有等待的goroutine。
计数与信号量的实现通过根据当前指针的地址确定采用哪个分段进行计数和等待。添加等待计数和Done完成等待事件分别对应sync.WaitGroup的Add和Done方法。等待所有操作完成时,sync.WaitGroup确保所有任务完成。
为了深入理解这些概念,可以参考相关文章和资源,如关于CPU缓存线大小和原子操作的讨论。此外,更多源码分析文章可关注特定的公告号或网站,如www.sreguide.com。本篇文章由ArtiPub自动发布平台发布。
Go的执行原理以及Go的命令
Go的源码文件主要分为三类:命令源码文件、库源码文件和测试源码文件。
命令源码文件是Go程序的入口,被声明为main包,包含main函数。文件被安装后,会根据GOPATH设置存放于当前工作区的bin目录或GOBIN设置的目录。这些文件可以单独运行,使用go run命令直接执行,或通过go build或go install生成可执行文件。命令源码文件不应与其他文件混合在同一个代码包中。
库源码文件不具备命令源码文件的特征,是普通源码文件。文件被安装后,对应的归档文件(.a文件)会被存放在当前工作区的pkg目录下的平台相关目录。库源码文件不能通过go build或go install编译和安装。
测试源码文件以_test.go为后缀,并包含Test或Benchmark函数。Test函数接受*testing.T参数,361游戏源码用于功能测试;Benchmark函数接受*testing.B参数,用于性能测试。
命令方面,Go的最新版本1.提供了个基本命令,如build、get、install、run等。build命令用于编译代码包及其依赖;get命令用于下载远程代码仓库中的代码包;install命令用于编译并安装代码包;run命令用于运行命令源码文件。build和install命令会在指定目录生成可执行文件;run命令只能运行命令源码文件。install命令还负责将编译结果移动到bin目录或GOBIN目录。get命令会将代码包下载到GOPATH中的src目录。clean命令用于清除已编译生成的文件。
fmt命令用来格式化代码文件,通常与gofmt命令结合使用,格式化后的结果会覆盖源代码文件。test命令自动读取_test.go文件,生成并运行测试用的可执行文件。doc命令提供强大的文档功能,可以查看相应package的文档,甚至创建本地版本的golang.org文档。fix命令用于修复老版本代码到新版本,version命令查看当前Go版本,env命令查看Go环境变量,list命令列出当前安装的所有package。
综上所述,Go的源码文件分类清晰,命令提供了全面的编译、下载、安装、测试和文档支持,满足了开发者的需求。
Go语言源码阅读分析(3)-- unsafe
Go语言的unsafe包提供了一套打破类型安全限制的操作,但使用时需谨慎,因为它可能导致代码无法移植。包内主要包含unsafe.go文件和一些声明,实际实现和测试用例并未提供。关键内容如下: 1. Pointer类型:可以转换为任何类型的指针,以及Uintptr类型,这种转换允许直接读写内存,风险极高,需谨慎使用。 - 可以将任意类型转换为Pointer类型,但转换后不能长于原类型,且要求内存布局一致。例如,将float转换为uint的函数`Floatbits`。 - Pointer可以转换为uintptr,但这种转换仅用于内存地址的打印,且不能直接从uintptr恢复为Pointer,除非是枚举类型。 2. 偏移指针:用于访问结构体字段或数组元素,需确保指针不会超出原始对象的内存范围。 3. syscall调用:在syscall包中,某些函数需要在同一条语句中进行指针到uintptr的转换,以确保指针指向的对象在调用时仍然有效。 4. reflect包使用:reflect.Value.Pointer和UndafeAddr返回的都是uintptr,应在获取后立即转换为Pointer,避免对象被GC回收。 5. 反射结构体转换:例如StringHeader和SliceHeader的Data字段,仅在指向活动切片或字符串时有效。 总之,unsafe包的使用需遵循特定的规则和限制,不当使用可能导致程序不稳定或移植问题。接下来的计划是研究reflect包。golang源码系列---手把手带你看heap实现
heap包定义实现堆所需结构与操作方法,包含Interface接口,允许实现堆功能。Push和Pop方法分别用于添加元素与移除堆顶元素。
构建堆时需实现sort.Interface接口。Heap包内部仅包含两个非导出函数,作为堆导出方法的基础。
down函数将堆顶元素下沉,保持堆结构。up函数则将当前节点上浮,确保堆的性质。
Init函数初始化堆结构。Push与Pop方法用于添加与移除元素,底层依赖up和down函数。
Remove方法移除指定位置元素,类似Pop,通过上浮下沉操作恢复堆结构。
Fix函数在节点值变化后,用于修复堆结构。
使用案例:以学生信息为例,根据年龄排序,并按升序输出。
总结:heap包提供实现堆所需的接口与方法,通过非导出函数与导出方法的配合,完成堆的操作与构建。实例化堆后,可根据具体需求使用Push、Pop、Remove与Fix方法,实现元素的添加、删除与结构修复。
Golang sort源码阅读
深入解析Go语言的sort源码,你会发现它并非简单的快排应用。首先,要排序的对象需要遵循特定的接口:
接下来,以sort.Ints为例,尽管它的名称暗示了快速排序,但实际上是个多算法融合的策略。在源码中,你会看到:
Go的sort函数巧妙地根据输入数据的特性,动态地切换到不同的排序算法。例如,在某些情况下,它会选择快速排序,而在其他情况下,又可能采用其他高效的排序方法。
这种灵活性并非Go所独有,Python和Java的排序方法,如TimSort,同样采用了混合排序的策略。这种设计让这些语言的sort函数能够在性能和效率上达到良好的平衡。
总的来说,Go的sort函数展现了一种智能的排序策略,通过结合多种算法,优化了排序过程,是值得深入研究的实现细节。
沉浸式go-cache源码阅读!
大家好,我是豆小匠,这期将带领大家探索go-cache的内部实现,深入理解本地缓存机制,并分享一些阅读源码的实用技巧。
首先,我们从源码入手,Goland中仅需关注cache.go和sharded.go两个文件,总共行代码,是不错的学习资源。通过README.md,可以了解到包的使用方法。
创建缓存实例时,我们注意到它依赖于清理间隔,而非实时过期删除。这引出了一个问题:如何在逻辑上处理过期缓存?我们开始在cache.go中寻找答案。
首先,我们关注Cache结构体,它定义了整个缓存的框架。接下来,重点阅读New函数,这里使用了runtime.SetFinalizer来确保即使对象被设置为nil,清理协程的GC回收也受到影响。
通过源码解析,我们明白,如果清理协程与Cache对象关联,即使对象不再活跃,GC仍无法立即回收。再深入Get方法,你会发现,缓存失效并非通过key是否存在,而是通过item中的过期时间判断,定时清理主要为了释放存储空间。
最后,我们对常用的方法进行挑选,梳理cache类的成员变量和功能,通过创建图示的方式,来帮助我们更好地理解和记忆。值得注意的是,onEvicted是删除key的回调函数,而sharded.go是未公开的分片缓存实验代码。
go语言是编译型还是解释型
Go语言是编译型语言。
首先,理解编译型和解释型语言的差异是关键。编译型语言会将源代码转换为机器代码,这是一组可以直接由计算机执行的低级指令。这个过程通常发生在程序运行之前,因此编译型语言通常具有较高的执行速度。相反,解释型语言在程序运行时,会逐行读取源代码并将其转换为机器代码执行。由于这个过程在运行时进行,解释型语言的执行速度通常比编译型语言慢。
Go语言被设计为编译型语言。当我们使用Go编译器(如gc)编译Go程序时,它会将Go源代码(.go文件)转换为二进制可执行文件。这个过程通常发生在程序运行之前。这意味着,一旦编译完成,生成的二进制文件可以直接在计算机上运行,无需任何中间的解释或转换过程。
举个例子,如果我们有一个简单的Go程序,如下所示:
go
package main
import "fmt"
func main() {
fmt.Println("Hello, World!")
}
使用Go编译器,我们可以将这个源代码文件编译为一个可执行文件。在命令行中,我们可以使用以下命令来完成这个过程:
bash
go build -o hello hello.go
上述命令会生成一个名为“hello”的可执行文件。这个文件是机器代码,可以直接在计算机上运行。当我们运行这个文件时,它会直接输出“Hello, World!”,无需任何中间的解释或转换过程。
总结来说,Go语言是编译型语言,它将源代码预先转换为机器代码,这使得Go程序具有较高的执行速度。
go源码分析——类型
类型是Go语言中的核心概念,用于定义数据的结构和行为。类型可以分为基础类型和自定义类型,编译器会为每种类型生成对应的描述信息,这些信息构成了Go语言的类型系统。内置类型的数据结构在`runtime.type`文件中,而自定义类型的数据结构在`type.go`文件中,包括了类型名称、大小、对齐边界等属性。例如,切片的元素类型和map的键值类型都在其中有所体现。空接口`interface{ }`和非空接口`iface`是描述接口的底层结构体,分别用于表示不包含方法的接口和包含方法的接口。空接口的结构简单,包含类型和数据的位置信息,而非空接口的结构更复杂,包含接口的类型、实体类型和方法信息。接口的实现依赖于方法集的匹配,时间复杂度为O(m+n)。断言是判断一个类型是否实现了某个接口的机制,它依赖于接口的动态类型和类型元数据。类型转换和接口断言遵循类型兼容性原则,而反射提供了访问和操作类型元数据的能力,其核心是`reflect.Type`和`reflect.Value`两个结构体类型,分别用于获取类型信息和操作值。反射的关键在于明确接口的动态类型和类型实现了哪些方法,以及类型元数据与空接口和非空接口的数据结构之间的关系。
2024-12-26 00:11
2024-12-26 00:09
2024-12-25 23:59
2024-12-25 23:39
2024-12-25 23:13
2024-12-25 23:07
2024-12-25 22:58
2024-12-25 22:46