皮皮网
皮皮网

【溯源码通行】【gdb调试python源码】【goroutine是什么源码】redis应用案例源码

时间:2024-12-27 16:22:29 来源:淘宝刷单 源码

1.redis源码学习-ziplist篇
2.[redis 应用案源码走读] sentinel 哨兵 - 脑裂处理方案
3.Springboot基于Redisson实现Redis分布式可重入锁案例到源码分析
4.用 Redis 搞定游戏中的实时排行榜,附源码!例源
5.Redis 应用案radix tree 源码解析
6.Redis 实现分布式锁 +Redisson 源码解析

redis应用案例源码

redis源码学习-ziplist篇

       Redis源码学习-ziplist篇

       ziplist是Redis中一种高效压缩的链表结构,用于存储字符串或整数。例源它并非传统的应用案链表,而是例源溯源码通行连续内存块组成,通过移动地址偏移量实现next和last操作,应用案内存利用率高但复杂性较大。例源

       ziplist的应用案实现独特,没有明确的例源struct,仅通过首地址获取其信息。应用案结构包含header、例源entrys和end三部分。应用案header部分记录首尾地址,例源entrys中每个entry有entry-header、应用案entry-encoding和entry-data,prevlength记录上一个节点长度,entry-encoding用于区分整数和字符串,entry-data存储实际内容。对于长度超过的字符串,会进行压缩编码。

       ziplist创建简单,使用zmalloc分配内存。insert和delete操作可能引发连锁更新,当新节点插入或原有节点删除时,需要调整相邻节点的prevlength,最坏情况下时间复杂度为O(n^2)。find函数则直接遍历,通过skip参数优化查找性能,特别是在上层容器如hash结构中。

       总结来说,ziplist通过连续内存优化内存使用,但其维护复杂性源于插入和删除操作时的连锁更新,find函数利用skip优化查找性能。

[redis 源码走读] sentinel 哨兵 - 脑裂处理方案

       哨兵模式的 Redis 集群在部署时可能出现脑裂现象,即产生多个主服务导致数据不一致的情况。哨兵通过检查、发现故障并进行故障转移来维护集群的高可用性。合理部署配置哨兵和主服务可以有效降低脑裂现象。配置哨兵节点个数和选举法定人数,确保多个哨兵能进行相互选举,选出领导者哨兵进行故障转移,法定人数一般建议为哨兵总数的一半以上,以实现少数服从多数的决策。对于主服务,通过修改配置,当主服务与一定数量的副本失去联系时,禁止客户端向故障主服务进行写操作,从而避免数据不一致的情况。解决此问题时,gdb调试python源码需注意配置选项min-slaves-to-write,其依赖于副本的链接个数,合理设置以确保集群的故障转移能力。高版本的 Redis 已对相关选项进行了优化。总之,通过合理部署哨兵和主服务配置,可以有效管理 Redis 集群,减少脑裂现象带来的问题。

Springboot基于Redisson实现Redis分布式可重入锁案例到源码分析

       一、前言

       实现Redis分布式锁,最初常使用SET命令,配合Lua脚本确保原子性。然而手动操作较为繁琐,官网推荐使用Redisson,简化了分布式锁的实现。本文将从官网至整合Springboot,直至深入源码分析,以单节点为例,详细解析Redisson如何实现分布式锁。

       二、为什么使用Redisson

       通过访问Redis中文官网,我们发现官方明确指出Java版分布式锁推荐使用Redisson。官网提供了详细的文档和结构介绍,帮助开发者快速上手。

       三、Springboot整合Redisson

       为了实现与Springboot的集成,首先导入Redisson依赖。接下来,参照官网指导进行配置,并编写配置类。结合官网提供的加锁示例,编写简单的Controller接口,最终测试其功能。

       四、lock.lock()源码分析

       在RedissonLock实现类中,`lock`方法的实现揭示了锁获取的流程。深入至`tryLockInnerAsync`方法,发现其核心逻辑。进一步调用`scheduleExpirationRenewal`方法,用于定时刷新锁的过期时间,确保锁的有效性。此过程展示了锁实现的高效与自适应性。

       五、lock.lock(, TimeUnit.SECONDS)源码分析

       当使用带有超时时间的`lock`方法时,实际调用的逻辑与常规版本类似,关键差异在于`leaseTime`参数的不同设置。这允许开发者根据需求灵活控制锁的持有时间。

       六、lock.unlock()源码分析

       解锁操作通过`unlockAsync`方法实现,goroutine是什么源码进一步调用`unlockInnerAsync`方法完成。这一过程确保了锁的释放过程也是异步的,增强了系统的并发处理能力。

       七、总结

       通过本文,我们跟随作者深入Redisson的底层源码,理解了分布式锁的实现机制。这一过程不仅提升了对Redisson的理解,也激发了面对复杂技术挑战时的勇气。希望每位开发者都能勇敢探索技术的边界,共同进步。欢迎关注公众号,获取更多技术文章首发信息。

用 Redis 搞定游戏中的实时排行榜,附源码!

       本文将深入探讨如何利用 Redis 实现游戏中的实时排行榜,并提供实现细节和源码。

       首先,我们以一个坦克手游为例。游戏中每个角色可拥有多种类型的坦克,玩家可以加入军团(公会)。这个系统需要实现两种主要的排行榜:等级排行榜和通天塔排行榜。

       等级排行榜的实现思路是将等级和战斗力合并为一个复合积分。我们可以设定一个公式:分数 = 等级* + 战力。因为玩家等级范围从1到,战斗力范围从0到,所以我们设计时考虑到,等级需要3位数,战斗力需要位数,合计需要位数的积分,而Redis的有序集合(SortedSet)的score取值范围是位整数或双精度浮点数,足以容纳这个需求。

       对于通天塔排行榜,我们采用类似但略有不同的策略。要求相同层数下,通关时间越早越排在前。我们可以将通关时间转换为相对于一个较远时间点(如--)的相对时间,计算公式为:分数 = 层数 * ^N + (基准时间 - 通关时间)。这里我们选择一个远到足以避免现实时间影响的时间戳,从而确保排名的公正性。

       为了实现实时更新排行榜数据,我们采用一个策略:使用 Redis 的有序集合存储玩家的复合积分(如角色uid和坦克id),而使用哈希存储动态数据(如玩家的其他相关信息)。当玩家等级或战斗力发生改变时,实时更新有序集合中的积分值即可。对于其他可能变化的数据,也相应地更新哈希表中的数据。

       在取排行榜时,以等级排行榜为例,平台框架源码大全我们可以使用 Redis 的命令来获取数据。具体的代码实现通常涉及多步骤操作,例如准备数据、排序、分批取数据等。优化点在于合理使用 Redis 的 Pipeline 和 Multi 模式,以提高性能和效率。

       最终,排行榜的实现并不止于此,我们需要考虑的细节还包括对排行榜数据的展示、排序算法的优化等。这里提供了一个基本框架和实现思路,具体的代码和详细步骤需要根据实际项目需求和环境进行调整。

       通过以上内容,我们已经对如何利用 Redis 来搭建游戏排行榜系统有了深入的理解。通过合理的数据结构设计和 Redis 命令的运用,可以实现高效、实时且易于维护的排行榜功能。

Redis radix tree 源码解析

       Redis 实现了不定长压缩前缀的 radix tree,用于集群模式下存储 slot 对应的所有 key 信息。本文解析在 Redis 中实现 radix tree 的核心内容。

       核心数据结构的定义如下:

       每个节点结构体 (raxNode) 包含了指向子节点的指针、当前节点的 key 的长度、以及是否为叶子节点的标记。

       以下是插入流程示例:

       场景一:仅插入 "abcd"。此节点为叶子节点,使用压缩前缀。

       场景二:在 "abcd" 之后插入 "abcdef"。从 "abcd" 的父节点遍历至压缩前缀,找到 "abcd" 空子节点,插入 "ef" 并标记为叶子节点。

       场景三:在 "abcd" 之后插入 "ab"。ab 为 "abcd" 的前缀,插入 "ab" 为子节点,并标记为叶子节点。同时保留 "abcd" 的前缀结构。

       场景四:在 "abcd" 之后插入 "abABC"。ab 为前缀,创建 "ab" 和 "ABC" 分别为子节点,保持压缩前缀结构。

       删除流程则相对简单,找到指定 key 的叶子节点后,向上遍历并删除非叶子节点。若删除后父节点非压缩且大小大于1,则需处理合并问题,以优化树的高度。

       合并的条件涉及:删除节点后,检查父节点是否仍为非压缩节点且包含多个子节点,以此决定是juc源码更新系列否进行合并操作。

       结束语:云数据库 Redis 版提供了稳定可靠、性能卓越、可弹性伸缩的数据库服务,基于飞天分布式系统和全SSD盘高性能存储,支持主备版和集群版高可用架构。提供全面的容灾切换、故障迁移、在线扩容、性能优化的数据库解决方案,欢迎使用。

Redis 实现分布式锁 +Redisson 源码解析

       在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。

       随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。

       实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。

       本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。

       为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。

       Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。

       通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。

       如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。

       在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。

       在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。

[redis 源码走读] maxmemory 数据淘汰策略

       Redis 是一个内存数据库,通过配置 `maxmemory` 来限定其内存使用量。当 Redis 主库内存超出限制时,会触发数据淘汰机制,以减少内存使用量,直至达到限制阈值。

       当 `maxmemory` 配置被应用,Redis 会根据配置采用相应的数据淘汰策略。`volatile-xxx` 类型配置仅淘汰设置了过期时间的数据,而 `allkeys-xxx` 则淘汰数据库中所有数据。若 Redis 主要作为缓存使用,可选择 `allkeys-xxx`。

       数据淘汰时机发生在事件循环处理命令时。有多种淘汰策略可供选择,从简单到复杂包括:不淘汰数据(`noeviction`)、随机淘汰(`volatile-random`、`allkeys-random`)、采样淘汰(`allkeys-lru`、`volatile-lru`、`volatile-ttl`、`volatile-freq`)以及近似 LRU 和 LRU 策略(`volatile-lru` 和 `allkeys-lru`)。

       `noeviction` 策略允许读操作但禁止大多数写命令,返回 `oomerr` 错误,仅允许执行少量写命令,如删除命令 `del`、`hdel` 和 `unlink`。

       `volatile-random` 和 `allkeys-random` 机制相对直接,随机淘汰数据,策略相对暴力。

       `allkeys-lru` 策略根据最近最少使用(LRU)算法淘汰数据,优先淘汰最久未使用的数据。

       `volatile-lru` 结合了过期时间与 LRU 算法,优先淘汰那些最久未访问且即将过期的数据。

       `volatile-ttl` 策略淘汰即将过期的数据,而 `volatile-freq` 则根据访问频率(LFU)淘汰数据,考虑数据的使用热度。

       `volatile-lru` 和 `allkeys-lru` 策略通过采样来近似 LRU 算法,维护一个样本池来确定淘汰顺序,以提高淘汰策略的精确性。

       总结而言,Redis 的数据淘汰策略旨在平衡内存使用与数据访问需求,通过灵活的配置实现高效的数据管理。策略的选择应基于具体应用场景的需求,如数据访问模式、性能目标等。

Redisson可重入锁加锁源码分析

       在分布式环境中,控制并发的关键往往需要分布式锁。Redisson,作为Redis的高效客户端,其源码清晰易懂,这里主要探讨Redisson可重入锁的加锁原理,以版本3..5为例,但重点是理解其核心逻辑,而非特定版本。

       加锁始于用户通过`redissonClient`获取RLock实例,并通过`lock`方法调用。这个过程最后会进入`RLock`类的`lock`方法,核心步骤是`tryAcquire`方法。

       `tryAcquire`方法中,首先获取线程ID,用于标识是哪个线程在请求锁。接着,尝试加锁的真正核心在`tryAcquireAsync`,它嵌套了`get`方法,这个get方法会阻塞等待异步获取锁的结果。

       在`tryAcquireAsync`中,如果锁的租期未设置,会使用默认的秒。脚本执行是加锁的核心,一个lua脚本负责保证命令的原子性。脚本中,`keys`和`argv`参数处理至关重要,尤其是判断哈希结构`_come`的键值对状态。

       脚本逻辑分为三个条件:如果锁不存在,会设置并设置过期时间;如果当前线程已持有锁,会增加重入次数并更新过期时间;若其他线程持有,加锁失败并返回剩余存活时间。加锁失败时,系统会查询锁的剩余时间,用于后续的重试策略。

       加锁成功后,会进行自动续期,通过`Future`监听异步操作结果。如果锁已成功获取且未设置过期时间,会定时执行`scheduleExpirationRenewal`,每秒检查锁状态,延长锁的存活时间。

       整个流程总结如下:首先通过lua脚本在Redis中创建和更新锁的哈希结构,对线程进行标识。若无过期时间,定时任务会确保锁的持续有效。重入锁通过`hincrby`增加键值对实现。加锁失败后,客户端会等待锁的剩余存活时间,再进行重试。

       至于加锁失败的处理,客户端会根据剩余存活时间进行阻塞,等待后尝试再次获取锁。这整个流程展现了Redisson可重入锁的简洁设计,主要涉及线程标识、原子操作和定时续期等关键点。

Redis 主从复制 - 源码梳理

       本文主要剖析Redis主从复制机制中的核心组件之一——复制积压缓冲区(Replication Buffer),旨在为读者提供一个对Redis复制流程和缓冲区机制深入理解的平台,以下内容仅基于Redis版本7.0.,若读者在使用过程中发现偏差,欢迎指正。

       复制积压缓冲区在逻辑上可理解为一个容量最大的位整数,其初始值为1,由offset、master_repl_offset和repl_backlog-histlen三个变量共同决定缓冲区的有效范围。offset表示缓冲区内命令起始位置,master_repl_offset代表结束位置,二者之间的长度由repl_backlog-histlen表示。

       每当主节点执行写命令,新生成的积压缓冲区大小增加,同时增加master_repl_offset和repl_backlog-histlen的值,直至达到预设的最大容量(默认为1MB)。一旦所有从节点接收到命令并确认同步无误,缓冲区内过期的命令将被移除,并调整offset和histlen以维持积压区容量的稳定性。

       为实现动态分配,复制积压缓冲区被分解成多个block,以链表形式组织。每个block采用引用计数管理策略,初始值为0,每当增加或删除从节点对block的引用时,计数值相应增减。新生成block时,将master_repl_offset+1设置为block的repl_offset值,并将写入命令拷贝至缓冲区内,与此同时,master_repl_offset和repl_backlog-histlen增加。

       通过循环遍历所有从节点,为每个从节点设置ref_repl_buf_node指向当前block或最后一个block,确保主从复制能够准确传递命令。当主节点接收到从节点的连接请求时,将开始填充积压缓冲区。在全量复制阶段,从slave-replstate为WAIT_BGSAVE_START至ONLINE,表示redis从后台进程开始执行到完成RDB文件传输和加载,命令传播至此阶段正式开始。

       针对每个从节点,主节点从slave-ref_block_pos开始发送积压缓冲区内的命令,每发送成功,slave-ref_block_pos相应更新。当积压缓冲区超过预设阈值,即复制积压缓冲区中的有效长度超过repl-backlog-size(默认1MB)时,主节点将清除已发送的缓冲区,释放内存。如果主节点写入命令频繁或从节点断线重连时间长,则需合理调整缓冲区大小(推荐值为2 * second * write_size_per_second)以保持增量复制的稳定运行。

       当最后一个从节点与主节点的连接断开超过repl-backlog-ttl(默认为秒)时,主节点将释放repl_backlog和复制积压缓冲区以确保资源的有效使用。不过需要注意的是,从节点的释放操作依赖于节点是否可能成为新的主节点,因此在最后处理逻辑上需保持谨慎。

在语音聊天室APP源码开发中,使用Redis实现关注好友功能

       在语音聊天室APP源码开发中,为了优化社交体验,实现关注好友功能成为关键。单纯通过数据库获取关注列表容易实现,但当需查询多个用户共同关注的人或共同粉丝时,效率低下。利用Redis可简化这一过程,其自带集合操作如交集、并集、差集,使处理变得高效。

       设计思路采用Redis中的zset,利用其排序与去重功能。每个用户存储两个集合,分别用于保存关注的用户和被关注的用户。主要使用命令:zadd用于添加成员,zrem移除成员,zcard统计成员数量,zrange查询指定区间成员(并可选返回成员与分数),zrevrange与zrange操作相反,zrank获取成员排名。zinterstore用于计算交集,聚合方式可选。

       以Java为例,实现过程分为三步:

       1. 添加语音聊天室APP源码Redis客户端。

       2. 封装简单的Redis工具类。

       3. 封装关注类(Follow类),整合上述功能。

       总结:通过Redis实现的语音聊天室APP源码关注好友功能,不仅简化了复杂操作,还提高了处理效率,为用户提供了更流畅的社交体验。本文转载自网络,旨在分享知识,如有侵权请告知云豹科技删除。

更多内容请点击【百科】专栏