皮皮网

【超级今买明卖指标源码】【源码未编译】【打卡分红源码】sklearn 源码

2024-12-26 01:15:07 来源:小生源码网

1.Toad:基于 Python 的标准化评分卡模型
2.python怎么建立数据模型?
3.Python机器学习系列sklearn机器学习模型的保存---pickle法
4.sklearn:Python语言开发的通用机器学习库

sklearn 源码

Toad:基于 Python 的标准化评分卡模型

       大家好,我是东哥。

       在信贷风控领域,评分卡模型是最为常见和经典的工具。评分卡通过为信贷客户分配分数,依据不同的超级今买明卖指标源码业务场景(贷前、贷中、贷后和反欺诈)进行评估,最终通过设置阈值给出评估结果。与XGB等机器学习模型相比,评分卡通常采用逻辑回归,因为它具有很强的特征解释性,属于广义线性回归模型。

       今天要介绍的是一个开源评分卡工具——toad,它提供了一条龙服务,包括数据探索、特征分箱、筛选、WOE转换、建模、评估、分数转换等过程,极大地简化了建模人员的工作。toad的基本操作可以通过pip安装完成。

       首先,源码未编译使用read_csv读取数据,了解数据概览。在测试数据中,有万条记录,包含个特征。数据的时间跨度为年5月至7月,我们将使用3月和4月的数据作为训练样本,5月、6月、7月的数据作为跨期样本(OOT)进行验证。

       接下来,通过toad的EDA功能进行数据探索分析,包括统计性特征、缺失值、unique values等信息。在进行变量筛选时,可以使用toad的quality功能计算各种指标,如iv值、gini指数、熵等,结果按照iv值排序。对于数据量大或高维度数据,建议使用iv_only=True。同时,打卡分红源码要删除主键、日期等高unique values且不用于建模的特征。

       在完成初步筛选后,通过toad.selection.select函数进一步筛选变量,根据阈值设置进行特征选择,最终保留个变量,并得到筛选后的数据集和被删除的变量列表。

       接下来是分箱过程,toad提供了多种分箱方法,包括等频分箱、等距分箱、卡方分箱、决策树分箱和最优分箱等。分箱结果对于WOE转换至关重要,toad支持数值型和离散型数据的分箱,并能单独处理空值。

       在完成分箱后,进行WOE转换,将数据转换为更容易解释的分数形式。通过观察分箱结果并进行调整,确保WOE转换后的分数具有良好的单调性。

       随后,应用逐步回归方法筛选特征,支持向前、gw源码社区向后和双向筛选。逐步回归通过使用sklearn的REF实现,通常情况下direction='both'效果最好。参数设置如正则化、样本权重等不在详细介绍范围内。

       完成建模后,使用逻辑回归对数据进行拟合,并计算预测结果。风控模型常用评价指标包括KS、AUC、PSI等。toad提供了快速实现这些评价指标的方法。

       评分卡转换是最后一步,将逻辑回归模型转换为标准评分卡,支持传入逻辑回归参数进行调整。

       toad还支持GBDT编码,作为GBDT与LR建模的前置,以提高模型学习效果。

       总结而言,toad提供了一套便捷的评分卡建模流程,大大简化了建模工作。在实际应用中,可以参考源码进行优化或扩展功能。

python怎么建立数据模型?

       Python数据建模的vsftpd 源码 配置一般过程可以大致分为以下几个步骤:

       1. 数据收集:首先需要收集数据。这可能包括从公开数据源、数据库、文件、API等获取数据。你可能需要选择适当的数据收集工具或库,如pandas的read_csv函数或requests库来从网站获取数据。

       2. 数据清洗:收集到的数据可能存在缺失值、错误值、重复值等问题,需要进行清洗。这一步通常包括删除重复行、填充缺失值、处理异常值等。可以使用Python的pandas库进行数据清洗。

       3. 数据预处理:数据预处理包括数据标准化、归一化、编码转换等步骤,以便于后续的数据分析。可以使用Python的pandas库进行数据预处理。

       4. 特征提取:根据研究问题和数据特点,从数据中提取出有用的特征。这可能包括数值特征、分类特征、时间序列特征等。可以使用Python的sklearn库进行特征提取。

       5. 模型选择与训练:根据研究问题和数据特点,选择合适的机器学习模型进行训练。常见的机器学习模型包括线性回归、逻辑回归、决策树、随机森林、神经网络等。可以使用Python的sklearn库进行模型训练。

       6. 模型评估:使用适当的方法对模型进行评估,如准确率、召回率、AUC-ROC等指标。评估结果可以帮助你了解模型的性能,从而进行调整和优化。

       7. 模型应用与优化:将模型应用于实际问题中,并根据应用结果对模型进行优化和调整。

       拓展知识:

       Python由荷兰国家数学与计算机科学研究中心的吉多·范罗苏姆于年代初设计,作为一门叫作ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。 

       Python在各个编程语言中比较适合新手学习,Python解释器易于扩展,可以使用C、C++或其他可以通过C调用的语言扩展新的功能和数据类型。Python也可用于可定制化软件中的扩展程序语言。Python丰富的标准库,提供了适用于各个主要系统平台的源码或机器码。

Python机器学习系列sklearn机器学习模型的保存---pickle法

       在Python机器学习系列中,sklearn库的pickle功能为我们提供了方便的模型保存与加载机制。pickle是Python标准库,它的序列化和反序列化功能使得模型的存储和复用变得简单易行。

       首先,通过pickle的pickle.dump()函数,我们可以将训练完成的模型序列化为一个.pkl文件,这个过程就是将复杂对象转化为可存储的字节流,便于后续的保存和传输。然后,当需要使用模型进行预测时,通过pickle.load()函数,我们可以从文件中反序列化出模型,恢复其原始状态。

       具体操作中,数据的划分是基础,通常将数据分为训练集和测试集。接着,利用训练集对模型进行训练,训练完成后,利用pickle.dump()保存模型。而在模型推理阶段,只需通过pickle.load()加载已保存的模型,输入测试集数据进行预测,以评估模型的性能。

       作者是一位在研究院从事数据算法研究的专家,拥有丰富的科研经验,曾在读研期间发表多篇SCI论文。他致力于分享Python、机器学习等领域的实践知识,以简洁易懂的方式帮助读者理解和应用,对于需要数据和源码的朋友,他鼓励直接联系他获取更多信息。

sklearn:Python语言开发的通用机器学习库

       sklearn,Python中的强大机器学习工具,对于实际项目应用,即便基础理论不足,也能通过API直接操作。它不仅是算法库的典范,其详尽文档如同《金刚经》般指导学习者入门。

       sklearn库的核心价值在于其广泛且完善的算法覆盖,以及易懂的文档设计。掌握基本的机器学习理论,结合sklearn提供的基础概念,如training data和model selection,就能有效利用其功能。它主要分为六个模块:分类、回归、聚类、降维、模型选择和预处理。

       实现机器学习项目通常分三步:数据预处理、模型构建与预测以及模型评估。以Iris数据集为例,通过数据划分、kNN分类,我们能快速上手sklearn的API。模型评估则涉及精确率、召回率等指标,确保模型效果。

       虽然深入理解sklearn需要一定的理论基础,但实际应用中,调用API而非底层实现更为常见。学习sklearn,可以分为三个层次:调用、调参和嚼透。初期只需掌握基本调用,随着经验积累,再逐步深入理解算法细节和调优。

       总结来说,sklearn是一个实用且强大的工具,适合初学者快速入门机器学习。在实际应用中,利用现有的库和理解源码是更明智的选择。而对于更深层次的理解,可以参考《全栈数据之门》或其他相关书籍。