【易语言motd源码】【源码怎么玩】【dotween 源码分析】量化app源码开源_量化app源码开源什么意思

来源:.net运行源码

1.quant哪个最好
2.硬核福利量化交易神器talib中28个技术指标的量化Python实现(附全部源码)
3.开源大模型GGUF量化(llama.cpp)与本地部署运行(ollama)教程
4.请问国内哪家量化平台比较好?
5.量化交易-vnpy_efinance-VeighNa框架数据服务接口
6.一大波国外高清量化网址正在袭来...

量化app源码开源_量化app源码开源什么意思

quant哪个最好

       最好的Quant软件是Python的PyQuant和QuantLib。

解释:

       Python的源源量源码PyQuant是一款非常强大的量化交易软件,它拥有强大的码开数据处理能力,能够实现复杂的开源交易策略。PyQuant提供了丰富的什意思库和工具,使得开发者可以轻松地构建自己的量化易语言motd源码交易系统。此外,源源量源码Python语言的码开简洁性和可读性也使得代码维护更加容易。

       QuantLib是开源一个跨平台的金融定量分析库,特别适用于开发复杂的什意思金融衍生品模型。它包含了广泛的量化金融工具和算法,可以帮助用户进行风险评估、源源量源码衍生品定价以及风险管理等任务。码开QuantLib还提供了强大的开源模拟功能,支持多种语言绑定,什意思包括Python。这使得开发者可以灵活地选择使用哪种语言进行开发。此外,其开源的特性也使得用户可以自由地获取和使用其源代码,便于进行二次开发和定制。因此,对于量化分析来说,QuantLib是一个不可忽视的优秀工具。

硬核福利量化交易神器talib中个技术指标的Python实现(附全部源码)

       本文将带您深入学习纯Python、Pandas、Numpy与Math实现TALIB中的源码怎么玩个金融技术指标,不再受限于库调用,从底层理解指标原理,提升量化交易能力。

       所需核心库包括:Pandas、Numpy与Math。重要提示:若遇“ewma无法调用”错误,建议安装Pandas 0.版本,或调整调用方式。

       我们逐一解析常见指标:

       1. 移动平均(Moving Average)

       2. 指数移动平均(Exponential Moving Average)

       3. 动量(Momentum)

       4. 变化率(Rate of Change)

       5. 均幅指标(Average True Range)

       6. 布林线(Bollinger Bands)

       7. 转折、支撑、阻力点(Trend, Support & Resistance)

       8. 随机振荡器(%K线)

       9. 随机振荡器(%D线)

       . 三重指数平滑平均线(Triple Exponential Moving Average)

       . 平均定向运动指数(Average Directional Movement Index)

       . MACD(Moving Average Convergence Divergence)

       . 梅斯线(High-Low Trend Reversal)

       . 涡旋指标(Vortex Indicator)

       . KST振荡器(KST Oscillator)

       . 相对强度指标(Relative Strength Index)

       . 真实强度指标(True Strength Index)

       . 吸筹/派发指标(Accumulation/Distribution)

       . 佳庆指标(ChaiKIN Oscillator)

       . 资金流量与比率指标(Money Flow & Ratio)

       . 能量潮指标(Chande Momentum Oscillator)

       . 强力指数指标(Force Index)

       . 简易波动指标(Ease of Movement)

       . 顺势指标(Directional Movement Index)

       . 估波指标(Estimation Oscillator)

       . 肯特纳通道(Keltner Channel)

       . 终极指标(Ultimate Oscillator)

       . 唐奇安通道指标(Donchian Channel)

       

参考资料:

乐学偶得系列笔记,开源项目ultrafinance。

       深入学习并应用这些指标,将大大提升您的量化交易与金融分析技能。

开源大模型GGUF量化(llama.cpp)与本地部署运行(ollama)教程

       llama.cpp与ollama是开源项目,旨在解决大型模型在本地部署时遇到的问题。通过llama.cpp,用户可以对模型进行量化,以解决模型在特定电脑配置下无法运行的问题。同时,ollama则提供了一个简单的方法,让量化后的模型在本地更方便地运行。

       对于许多用户来说,下载开源大模型后,往往面临不会运行或硬件配置不足无法运行的dotween 源码分析困扰。本文通过介绍llama.cpp和ollama的使用,提供了一个从量化到本地运行的解决方案。

       下面,我们以Llama2开源大模型为例,详细说明如何在本地使用llama.cpp进行量化GGUF模型,并通过ollama进行运行。

       在开始前,如果对量化和GGUF等专业术语感到困惑,建议使用文心一言或chatGPT等AI工具进行查询以获取更多信息。

       使用ollama进行运行非常简单,只需访问其官网下载安装应用即可。支持众多大模型,操作指令直接使用`ollama run`即可自动下载和运行大模型。

       运行指令示例:对于llama2大模型,原本.5G的7b模型在ollama中压缩至3.8G,量化等级为Q4_0。若需导入并运行已量化的GGUF模型,只需创建一个文件并添加FROM指令,指定模型本地文件路径。

       在使用ollama进行模型操作时,需注意创建模型、运行模型等步骤。若有疑问,可留言交流。

       对于自行下载的vscode源码 剖析模型,要实现量化成GGUF格式,就需要借助于llama.cpp项目。该项目旨在实现LLM推理,支持多种量化级别,如1.5位、2位、3位、4位、5位、6位和8位整数量化,以提高推理速度并减少内存使用。

       要使用llama.cpp,首先需克隆源码并创建build目录,然后通过Cmake进行编译。推荐使用Visual Studio 进行编译。编译成功后,可在bin/release目录找到编译好的程序。

       接下来,通过llama.cpp项目中的convert.py脚本将模型转换为GGUF格式。对于llama2-b模型,转换后的模型大小从.2G缩减至6.G。

       量化模型后,运行时使用llama.cpp编译的main.exe或直接使用ollama进行操作。通过创建文本文件并指定模型,使用ollama run指令即可轻松运行量化后的ai相机源码模型。

       本文通过详细示例展示了如何利用llama.cpp和ollama对大模型进行量化并实现本地运行。若需进一步了解或在操作中遇到问题,欢迎在留言区进行交流。

请问国内哪家量化平台比较好?

       推荐澎博财经的真格量化。云端运行,行情和交易速度都经过专业优化。

       支持期货、期权和ETF的tick级别回测。

       有完善的文档和培训教程。

       支持编程语言为Python2.7和Python3.5.

       上手很快,对用户非常友好。

量化交易-vnpy_efinance-VeighNa框架数据服务接口

       我们之前对vnpy_ctastrategy相关回测源码进行了解析:

       回首凡尘不做仙:VNPY源码分析1-vnpy_ctastrategy-运行回测

       回首凡尘不做仙:VNPY源码分析2-vnpy_ctastrategy-撮合成交

       回首凡尘不做仙:VNPY源码分析3-vnpy_ctastrategy-计算策略统计指标

       相关历史数据可以通过各类数据服务的适配器接口(datafeed)下载,目前vn.py支持以下接口:

       然而,上述接口需要注册或付费才能获取数据。

       为了帮助初学者更好地理解和学习量化交易以及vn.py框架,我开发了基于efinance数据接口的vn.py的datafeed。

       开源地址为:github.com/hgy/vnpy...

       编译安装:

       下载源代码后,解压并在cmd中运行:

       dist目录下vnpy_efinance-x.x.x-py3-none-any.whl包

       使用:

       安装完成后,在vn.py框架的trader目录中的setting.py中进行配置:

       注意:此处只需配置datafeed.name,username和password无需配置。

       配置完成后,可以通过以下示例进行调用:

       同时,这里分享一个efinance数据下载及入库方法:

       然而,efinance在获取分钟级别数据方面并不友好。对于需要获取分钟级别数据的初学者来说,我们可以使用天勤免费版的数据接口:

       回首凡尘不做仙:量化交易-数据获取-vnpy_tqsdk免费版

一大波国外高清量化网址正在袭来...

       随着春节的结束,工作和学习的节奏回归正轨,我开始整理各类量化资源,为读者们提供更新内容。在海外资料的探索中,我发现了一些优质的量化资料,包括理论和源码,适合初学者入门。考虑到国内朋友们的需求,我想把这些国外的好资源介绍给大家,希望你们能从中汲取精华,提升自己。

       对于国内逐渐兴起的量化交易,虽然起源于国外,但了解和学习的渠道在哪里呢?这里有一份推荐清单:《Best Quant Blogs and Websites》。这个网址是 feedly.com/i/top/quant-...

       这个列表收录了个备受国外关注的量化网站和博客,如Quantocracy、Quantpedia和Quantstart等,都是经常被提及的资源。由于是国外站点,访问可能受限,但别担心,我已经将所有相关网址保存,只需回复公Z号『量化君也』的暗号即可获取。

       除了上述资源,还有其他文章供你参考,如《Best Quant websites | An unconventional guide》和《TOP Useful Blogs and Websites for Quants》。国外的量化资源丰富多样,国内的朋友可以通过这些站点学习到更多专业知识。

       以QuantInsti为例,这个网站可以直接访问,无需登录,它的量化文章分类清晰,是入门学习的好去处。网站的Blogs标签下,你可以找到涵盖自动化交易、机器学习等个版块的深入教程,包括《Algorithmic Trading Strategies》、《Stock Market Data Analysis》等文章。

       其中,机器学习版块尤其出色,不仅有理论讲解,还提供实践案例和Python代码,非常适合学习者。如果你想尝试使用神经网络、决策树等算法进行量化交易,这里也有相关的文章推荐,如《Neural Network In Python》和《Decision Tree For Trading Using Python》等。

       总的来说,国外的量化资源丰富且实用,借助翻译工具,即使英语基础一般,也能无障碍学习。希望这些信息能帮助到你,欢迎关注『量化君也』公Z号,那里有更多的量化策略和知识分享。我是@quantkoala,期待与你一起交流和进步!

准备学习下量化,发现市面上有很多量化平台,聚宽,米匡,BIGQUANT等等,大家使用感受怎么样?

       探索量化投资之路:用户分享各平台体验

       作为一位有着6年多量化投资经验的专业人士,我见证了量化投资市场的变迁。从最初的中低频策略,到如今的日间高频交易(T0),我尝试过市面上众多的量化平台,包括聚宽、米筐、BIGQUANT等,下面是我对这些平台的一些深入体验和见解。

       年是量化投资的转折点,牛市与互联网的结合孕育了量化投资的热潮。各大平台,如米筐、聚宽,都是在那一年崭露头角,它们以Python编程环境、基础研究数据和活跃的社区吸引着投资者。那时的平台,不论是界面设计还是盈利模式,都以用户增长为核心,像互联网产品一样追求用户基础的积累。比如米筐,它的Barra研究体系就像量化投资的入门指南。它通过提供一键式函数实现Barra功能,社区里则充斥着丰富的源码和实践案例,让新手可以轻松上手。

       然而,这种模式在年后开始面临挑战。市场波动和政策变化使得许多策略失效,量化投资的圣杯似乎不再那么简单易得。优矿依托于通联数据,保持了其数据质量的优势。聚宽则走出了一条多元化道路,不仅服务券商T0业务,还拥有自己的策略团队,这在一定程度上意味着它们在寻求更深度的投研结合,但同时也放弃了部分线上用户。米筐则转向了机构服务,提供本地部署和自动化解决方案,继续深耕量化领域。

       对于BIGQUANT,虽然我使用经验有限,但从市场反馈来看,其发展路径可能与上述平台有所不同。如果你正准备学习量化投资,我建议你通过这些早期的论坛去寻找资料,尽管一些社区可能已不再活跃,但早期的框架和理念仍值得了解。但请记住,寻找所谓的"圣杯"不再是关键,更重要的是理解和掌握投资的复杂性,理解财务基本面和有效因子的挖掘需要更深入的学习和实践。

       总结来说,每个平台都有其特色和局限,而量化投资的真正挑战在于深度学习和持续适应市场变化。在这个过程中,意识到投资的困难是成长的第一步,也是通往成功的关键。

文章所属分类:时尚频道,点击进入>>