1.Spring Boot集成Redisson详细介绍
2.Redisson限流器RRateLimiter使用及源码分析
3.redission分布式锁的源码原理是什么?
4.Springboot基于Redisson实现Redis分布式可重入锁案例到源码分析
5.一对一源码,基于Redis实现分布式锁的推荐方式
6.分布式锁技术探究 - Redisson & curator 源码解读
Spring Boot集成Redisson详细介绍
Redisson是一个用于Java的分布式和高可用的Java对象框架,依托Redis实现,源码为开发者提供了一系列分布式功能。推荐在Spring Boot项目中集成Redisson,源码能帮助我们更轻松地实现分布式锁、推荐威信通源码分布式对象、源码分布式集合等功能,推荐提高应用的源码可扩展性和可靠性。
首先,推荐确保在Spring Boot项目的源码pom.xml文件中,添加Redisson的推荐Maven依赖:
xml
com.redislabs
redisson
4.4.2
接下来,在application.yml配置文件中添加Redisson的源码配置信息:
yaml
# Redisson Configuration
redisson:
address: redis://localhost:
请确保根据实际情况调整地址、端口等配置信息。推荐
接着,源码在代码中添加配置类RedissonConfig,以确保Spring Boot框架能正确识别Redisson配置:
java
@Configuration
public class RedissonConfig {
@Bean
public RedissonClient redissonClient() {
return Redisson.create(config);
}
private Config config() {
Config config = new Config();
config.useSingleServer()
.setAddress("redis://localhost:")
.setPassword("your-password"); // 如果Redis实例有密码,记得添加密码配置
return config;
}
}
至此,Redisson配置已完成。现在,你可以在代码中使用Redisson提供的功能,如分布式锁、分布式对象和分布式集合等。
示例:实现分布式锁
java
import redis.clients.jedis.Jedis;
import redis.clients.jedis.ShardedJedis;
public class DistributedLock {
private final String key = "distributed-lock";
public boolean lock(int expireSeconds) {
ShardedJedis jedis = new ShardedJedis();
try {
// 设置过期时间
jedis.expire(key, expireSeconds);
// 设置锁
jedis.set(key, "locked");
return true;
} catch (Exception e) {
return false;
} finally {
jedis.close();
}
}
public void unlock() {
ShardedJedis jedis = new ShardedJedis();
try {
jedis.del(key);
} catch (Exception e) {
// 忽略异常
} finally {
jedis.close();
}
}
}
通过集成Redisson,开发者能够轻松实现分布式系统中的各种功能,提升应用的可伸缩性和可靠性。对于生产环境中的跨机房使用承载网连接Redis的情况,后续我们将会详细探讨如何使用Redisson实现承载网转换源码改造,以进一步提高系统的性能和稳定性。
本文旨在帮助你快速了解Spring Boot集成Redisson的基本步骤和示例,并在实际项目中应用这些功能。希望你能在项目中取得成功!
Redisson限流器RRateLimiter使用及源码分析
Redisson限流器RRateLimiter使用及源码分析
在项目中引入Redisson限流器RRateLimiter,通过以下步骤实现限流功能。首先使用Redis命令将限流的配置信息保存在Redis中,具体代码如下:执行`hsetnx testRedissonRateLimiter rate `,设置限流次数为,`testRedissonRateLimiter`为自定义的键名。
执行`hsetnx testRedissonRateLimiter interval `,busybox源码目录在设置限流时间,单位为毫秒。
执行`hsetnx testRedissonRateLimiter type 0`,设置限流类型,枚举值为RateType.OVERALL。
将配置信息保存于Redis的HashMap结构中,使用`hsetnx`确保设置成功。然后判断是否超过限流次数。 通过`getValueName()`方法获取限流配置,进一步调用`tryAcquire()`方法检查是否超过限流次数。Lua脚本返回`nil`代表未超过限流,若有值则已超过限流。`pttl`命令始终返回值,即使用于不存在的键。 使用`getConfig()`方法获取所有限流配置信息,执行`delete()`方法清除限流配置。值得注意的是,Redisson在删除限流配置时存在一个BUG,仅删除了`testRedissonRateLimiter`键,未清理`{ testRedissonRateLimiter}:value`键,影响判断请求是否超过限流次数。此问题于年2月日::被发现,Redisson版本为3..7。 为了验证限流功能,调试时逐步执行代码,同时观察Redis服务器命令监控,确保限流功能按预期运行。redission分布式锁的原理是什么?
在现代生产环境中,Redisson客户端被广泛使用于实现分布式锁。尽管一些企业可能会选择自行基于Redis编写分布式锁客户端,理解分布式锁的实现原理、加锁机制以及锁信息在Redis中的存储方式,对后续功能开发大有裨益。以Redisson实现的可重入锁为例,其原理及其加锁流程如下。
加锁时,需要记录锁的信息及持有锁的客户端线程标识。在Redisson中,设置铃声代码源码通常使用哈希结构来实现这一功能。例如,"_come"作为分布式锁的名称,多个节点竞争锁时,此名称保持一致。"ffa-e0f7--ad5a-d:1"表示持有锁的客户端标识,由UUID:threadId构成,其中UUID为锁对象的标识,threadId为线程标识,后跟重入次数标记,即value值。
理解了这一哈希结构后,可重入锁的实现原理便显而易见:通过value值+1操作来表示重入次数。
加锁失败时,线程将获取锁的剩余存活时间,并进入阻塞状态,阻塞时间等于锁的剩余存活时间。若在阻塞时间内未成功加锁,线程会再次尝试,直至成功或超时。然而,如果锁的存活时间在阻塞期间结束,则线程将收到锁释放的消息,不再需要阻塞等待。
此阻塞操作实际上利用了JUC中的Semaphore信号量实现。通过Redis的订阅发布功能,线程在阻塞前订阅特定通道,当锁被释放时,向该通道发送消息。订阅该通道的客户端接收到消息后,便知锁已被释放,无需持续阻塞。
Redisson提供的分布式锁类型包括可重入锁、公平锁和读写锁。掌握这些锁的原理,有助于在面试中应对分布式锁相关问题。如需进一步深入了解,可参考整理的大圣系列源码搭建Redisson系列源码解读文章。
Springboot基于Redisson实现Redis分布式可重入锁案例到源码分析
一、前言
实现Redis分布式锁,最初常使用SET命令,配合Lua脚本确保原子性。然而手动操作较为繁琐,官网推荐使用Redisson,简化了分布式锁的实现。本文将从官网至整合Springboot,直至深入源码分析,以单节点为例,详细解析Redisson如何实现分布式锁。
二、为什么使用Redisson
通过访问Redis中文官网,我们发现官方明确指出Java版分布式锁推荐使用Redisson。官网提供了详细的文档和结构介绍,帮助开发者快速上手。
三、Springboot整合Redisson
为了实现与Springboot的集成,首先导入Redisson依赖。接下来,参照官网指导进行配置,并编写配置类。结合官网提供的加锁示例,编写简单的Controller接口,最终测试其功能。
四、lock.lock()源码分析
在RedissonLock实现类中,`lock`方法的实现揭示了锁获取的流程。深入至`tryLockInnerAsync`方法,发现其核心逻辑。进一步调用`scheduleExpirationRenewal`方法,用于定时刷新锁的过期时间,确保锁的有效性。此过程展示了锁实现的高效与自适应性。
五、lock.lock(, TimeUnit.SECONDS)源码分析
当使用带有超时时间的`lock`方法时,实际调用的逻辑与常规版本类似,关键差异在于`leaseTime`参数的机场源码搭建不同设置。这允许开发者根据需求灵活控制锁的持有时间。
六、lock.unlock()源码分析
解锁操作通过`unlockAsync`方法实现,进一步调用`unlockInnerAsync`方法完成。这一过程确保了锁的释放过程也是异步的,增强了系统的并发处理能力。
七、总结
通过本文,我们跟随作者深入Redisson的底层源码,理解了分布式锁的实现机制。这一过程不仅提升了对Redisson的理解,也激发了面对复杂技术挑战时的勇气。希望每位开发者都能勇敢探索技术的边界,共同进步。欢迎关注公众号,获取更多技术文章首发信息。
一对一源码,基于Redis实现分布式锁的方式
一对一源码,基于Redis实现分布式锁的方式
方案1:setnx 方案(不建议使用)
实际设置成功时,表示获取到锁。
该方案存在的问题:
1、存在死锁的可能
2、锁在持有期间过期
方案2:set扩展命令
针对方案1存在的问题,在redis版本 >=2.8 ,针对set命令进行扩展来解决这个setnx + expire的原子性问题。命令如下:
将setnx + expire 2个命令合并成1个,保证了原子性。
代码例子:
通过方案2可以解决大部分业务场景,如果有些业务场景需要锁的可重入性,可以参考可重入性。
方案3:通过lua脚本打包 setnx + expire 命令
redis可以通过lua脚本打包多个命令进行执行,保证其执行原子性,可以解决 setnx + expire 原子性执行问题。
代码例子:
通过方案2和方案3,可以解决大部分业务场景,如果有些业务场景需要锁的可重入性,可以参考可重入性。
方案4 基于redisson(推荐使用)
redisson 是基于一个 redis java client,底层实现做了很多封装,比如分布式锁、读写锁等等,具体请看官网。
核心代码:
redisson 对比上面几个方案,其实实现是类似的,只不过做了大量的封装,使用非常简单,而且内部增加了 watch dog 续期机制。
测试代码:
测试结果如下:由于设置watch dog 超时时间秒,所以 3秒进行1次续期(1/3 * ),所以从 ttl 变成 主要是因为续期带来的。
分布式锁技术探究 - Redisson & curator 源码解读
在高并发场景中,为解决资源竞争和共享问题,引入了分布式锁,衍生出可重入锁、读写锁等。随着服务架构的分布式化,这些并发问题扩展到了分布式场景,业务中需要分布式锁和分布式AQS来确保资源管理。
分布式锁的实现方式多样,如基于Redis的Redisson和Zookeeper的Curator。Redisson利用redLock算法避免主从复制导致的重复加锁,但存在单点故障问题。Curator则依赖zk的临时顺序节点实现锁,提供了一种更健壮的解决方案。
要选择分布式锁,需关注其基本特性,如高可用性、线程安全、可重入性、锁的公平性等。Redisson的锁模型通过lua脚本保证原子性和公平性,而Curator的zk实现则利用watcher机制实现公平锁。
Redisson提供更丰富的功能,如可重入锁、读写锁,以及通过lua脚本实现的高级特性。而zk的zk锁模型更为简单,公平性较好,适用于对强一致性要求较低的场景。
总结来说,选择哪种分布式锁取决于业务需求和性能要求,Redisson适合竞争激烈但对一致性要求不高的场景,而zk在强一致性方面更有优势。
Redisson可重入锁加锁源码分析
在分布式环境中,控制并发的关键往往需要分布式锁。Redisson,作为Redis的高效客户端,其源码清晰易懂,这里主要探讨Redisson可重入锁的加锁原理,以版本3..5为例,但重点是理解其核心逻辑,而非特定版本。
加锁始于用户通过`redissonClient`获取RLock实例,并通过`lock`方法调用。这个过程最后会进入`RLock`类的`lock`方法,核心步骤是`tryAcquire`方法。
`tryAcquire`方法中,首先获取线程ID,用于标识是哪个线程在请求锁。接着,尝试加锁的真正核心在`tryAcquireAsync`,它嵌套了`get`方法,这个get方法会阻塞等待异步获取锁的结果。
在`tryAcquireAsync`中,如果锁的租期未设置,会使用默认的秒。脚本执行是加锁的核心,一个lua脚本负责保证命令的原子性。脚本中,`keys`和`argv`参数处理至关重要,尤其是判断哈希结构`_come`的键值对状态。
脚本逻辑分为三个条件:如果锁不存在,会设置并设置过期时间;如果当前线程已持有锁,会增加重入次数并更新过期时间;若其他线程持有,加锁失败并返回剩余存活时间。加锁失败时,系统会查询锁的剩余时间,用于后续的重试策略。
加锁成功后,会进行自动续期,通过`Future`监听异步操作结果。如果锁已成功获取且未设置过期时间,会定时执行`scheduleExpirationRenewal`,每秒检查锁状态,延长锁的存活时间。
整个流程总结如下:首先通过lua脚本在Redis中创建和更新锁的哈希结构,对线程进行标识。若无过期时间,定时任务会确保锁的持续有效。重入锁通过`hincrby`增加键值对实现。加锁失败后,客户端会等待锁的剩余存活时间,再进行重试。
至于加锁失败的处理,客户端会根据剩余存活时间进行阻塞,等待后尝试再次获取锁。这整个流程展现了Redisson可重入锁的简洁设计,主要涉及线程标识、原子操作和定时续期等关键点。
Redis 实现分布式锁 +Redisson 源码解析
在一些场景中,多个进程需要以互斥的方式独占共享资源,这时分布式锁成为了一个非常有用的工具。
随着互联网技术的快速发展,数据规模在不断扩大,分布式系统变得越来越普遍。一个应用往往会部署在多台机器上(多节点),在某些情况下,为了保证数据不重复,同一任务在同一时刻只能在一个节点上运行,即确保某一方法在同一时刻只能被一个线程执行。在单机环境中,应用是在同一进程下的,仅需通过Java提供的 volatile、ReentrantLock、synchronized 及 concurrent 并发包下的线程安全类等来保证线程安全性。而在多机部署环境中,不同机器不同进程,需要在多进程下保证线程的安全性,因此分布式锁应运而生。
实现分布式锁的三种主要方式包括:zookeeper、Redis和Redisson。这三种方式都可以实现分布式锁,但基于Redis实现的性能通常会更好,具体选择取决于业务需求。
本文主要探讨基于Redis实现分布式锁的方案,以及分析对比Redisson的RedissonLock、RedissonRedLock源码。
为了确保分布式锁的可用性,实现至少需要满足以下四个条件:互斥性、过期自动解锁、请求标识和正确解锁。实现方式通过Redis的set命令加上nx、px参数实现加锁,以及使用Lua脚本进行解锁。实现代码包括加锁和解锁流程,核心实现命令和Lua脚本。这种实现方式的主要优点是能够确保互斥性和自动解锁,但存在单点风险,即如果Redis存储锁对应key的节点挂掉,可能会导致锁丢失,导致多个客户端持有锁的情况。
Redisson提供了一种更高级的实现方式,实现了分布式可重入锁,包括RedLock算法。Redisson不仅支持单点模式、主从模式、哨兵模式和集群模式,还提供了一系列分布式的Java常用对象和锁实现,如可重入锁、公平锁、联锁、读写锁等。Redisson的使用方法简单,旨在分离对Redis的关注,让开发者更专注于业务逻辑。
通过Redisson实现分布式锁,相比于纯Redis实现,有更完善的特性,如可重入锁、失败重试、最大等待时间设置等。同时,RedissonLock同样面临节点挂掉时可能丢失锁的风险。为了解决这个问题,Redisson提供了实现了RedLock算法的RedissonRedLock,能够真正解决单点故障的问题,但需要额外为RedissonRedLock搭建Redis环境。
如果业务场景可以容忍这种小概率的错误,推荐使用RedissonLock。如果无法容忍,推荐使用RedissonRedLock。此外,RedLock算法假设存在N个独立的Redis master节点,并确保在N个实例上获取和释放锁,以提高分布式系统中的可靠性。
在实现分布式锁时,还需要注意到实现RedLock算法所需的Redission节点的搭建,这些节点既可以是单机模式、主从模式、哨兵模式或集群模式,以确保在任一节点挂掉时仍能保持分布式锁的可用性。
在使用Redisson实现分布式锁时,通过RedissonMultiLock尝试获取和释放锁的核心代码,为实现RedLock算法提供了支持。